Advertisement

Evolutionary Genetics of Hypoxia and Cold Tolerance in Mammals

  • Kangli Zhu
  • Deyan Ge
  • Zhixin Wen
  • Lin Xia
  • Qisen Yang
Original Article

Abstract

Low oxygen and fluctuant ambient temperature pose serious challenges to mammalian survival. Physiological adaptations in mammals to hypoxia and low temperatures have been intensively investigated, yet their underlying molecular mechanisms need further exploration. Independent invasions of high-altitude plateaus, subterranean burrows and marine environments by different mammals provide opportunities to conduct such analyses. Here, we focused on six genes in the hypoxia inducible factor (HIF) pathway and two non-shivering thermogenesis (NST)-related genes [PPAR co-activator 1 (PGC-1) and uncoupling protein 1 (UCP1)] in representative species of pikas and other mammals to understand whether these loci were targeted by natural selection during independent invasions to conditions characterized by hypoxia and temperature fluctuations by high-altitude, subterranean and marine mammals. Our analyses revealed pervasive positive selection signals in the HIF pathway genes of mammals occupying high-altitude, subterranean and aquatic ecosystems; however, the mechanisms underlying their independent adaptations to hypoxic environments varied by taxa, since different genes were positively selected in each taxon and expression levels of individual genes varied among species. Additionally, parallel amino acid substitutions were also detected in hypoxia-tolerant mammals, indicating that convergent evolution may play a role in their independent adaptations to hypoxic environments. However, divergent evolutionary histories of NST-related genes were noted, since significant evidence of positive selection was observed in PGC-1 and UCP1 in high-altitude species and subterranean rodents; however, UCP1 may have already lost its function in diving cetaceans, which may be related to the thick blubber layer of adipose and connective tissue in these mammals.

Keywords

Hypoxia Low temperature Adaptive evolution HIF pathway NST Differential expression 

Notes

Acknowledgements

This work was supported by Key Laboratory of Zoological Systematics and Evolution of the Chinese Academy of Sciences (No. Y229YX5105) and National Special Fund on Basic Research of Science and Technology of China (No. 2014FY110100). The authors wish to thank the members of our lab for collecting samples for so many years.

Supplementary material

239_2018_9870_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2020 KB)

References

  1. Arieli R, Heth G, Nevo E, Hoch D (1986) Hematocrit and hemoglobin concentration in four chromosomal species and some isolated populations of actively speciating subterranean mole rats in Israel. Experientia 42:441–443PubMedCrossRefGoogle Scholar
  2. Bai ZZ, Tana WR, Liu S, Han SR, Chen L, McClain D, Ge RL (2015) Intermittent cold exposure results in visceral adipose tissue “browning” in the plateau pika (Ochotona curzoniae). Comp Biochem Physiol A Mol Integr Physiol 184:171–178PubMedCrossRefGoogle Scholar
  3. Bennett NC, Jarvis JUM, Davies KC (1988) Daily and seasonal temperatures in the burrows of African rodent moles. S Afr J Zool 23:189–195CrossRefGoogle Scholar
  4. Berg F, Gustafson U, Andersson L (2006) The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets. PLos Genet 2:e129PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bi JL, Hu B, Zheng JS, Wang JZ, Xiao WH, Wang D (2015) Characterization of the hypoxia-inducible factor 1 alpha gene in the sperm whale, beluga whale, and Yangtze finless porpoise. Mar Biol 162:1201–1213CrossRefGoogle Scholar
  6. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bouillaud F, Weissenbach J, Ricquier D (1986) Complete cDNA-derived amino acid sequence of rat brown fat uncoupling protein. J Biol Chem 261:1487–1490PubMedGoogle Scholar
  8. Bridgham JT (2016) Predicting the basis of convergent evolution. Science 354:289–289PubMedCrossRefGoogle Scholar
  9. Buffenstein R (2000) Ecophysiological responses of subterranean rodents to underground habitats. In: Lacey EA, Patton JL, Cameron GN (eds), Life underground, the biology of subterranean rodents, University Chicago Press, Chicago, pp 62–110Google Scholar
  10. Cannon B, Nedergaard J (2004) Brown adipose tissue: Function and physiological significance. Physiol Rev 84:277–359CrossRefGoogle Scholar
  11. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefGoogle Scholar
  12. Chowdhury R, Hardy A, Schofield CJ (2008) The human oxygen sensing machinery and its manipulation. Chem Soc Rev 37:1308–1319PubMedCrossRefGoogle Scholar
  13. Chowdhury R, Leung IKH, Tian Y-M, Abboud MI, Ge W, Domene C, Cantrelle F-X, Landrieu I, Hardy AP, Pugh CW, Ratcliffe PJ, Claridge TDW, Schofield CJ (2016) Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat Commun 7:12673PubMedPubMedCentralCrossRefGoogle Scholar
  14. Citta JJ, Suydam RS, Quakenbush LT, Frost KJ, O’Corry-Crowe GM (2013) Dive behavior of eastern chukchi beluga whales (Delphinapterus leucas), 1998–2008. Arctic 66:389–406CrossRefGoogle Scholar
  15. Corbet GB (1978) The mammals of the palaearctic region: a taxonomic review. British Museum (Natural History) and Cornell University Press, LondonGoogle Scholar
  16. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21CrossRefGoogle Scholar
  18. Dunkin RC, McLellan WA, Blum JE, Pabst DA (2005) The ontogenetic changes in the thermal properties of blubber from Atlantic bottlenose dolphin Tursiops truncatus. J Exp Biol 208:1469–1480PubMedCrossRefGoogle Scholar
  19. Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper M-E, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94PubMedCrossRefGoogle Scholar
  20. Fang X, Nevo E, Han L, Levanon EY, Zhao J, Avivi A, Larkin D, Jiang X, Feranchuk S, Zhu Y, Fishman A, Feng Y, Sher N, Xiong Z, Hankeln T, Huang Z, Gorbunova V, Zhang L, Zhao W, Wildman DE, Xiong Y, Gudkov A, Zheng Q, Rechavi G, Liu S, Bazak L, Chen J, Knisbacher BA, Lu Y, Shams I, Gajda K, Farré M, Kim J, Lewin HA, Ma J, Band M, Bicker A, Kranz A, Mattheus T, Schmidt H, Seluanov A, Azpurua J, McGowen MR, Ben Jacob E, Li K, Peng S, Zhu X, Liao X, Li S, Krogh A, Zhou X, Brodsky L, Wang J (2014a) Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nat Commun 5:3966PubMedCrossRefGoogle Scholar
  21. Fang X, Seim I, Huang Z, Gerashchenko Maxim V, Xiong Z, Turanov Anton A, Zhu Y, Lobanov Alexei V, Fan D, Yim Sun H, Yao X, Ma S, Yang L, Lee SG, Kim Eun B, Bronson Roderick T, Šumbera R, Buffenstein R, Zhou X, Krogh A, Park Thomas J, Zhang G, Wang J, Gladyshev Vadim N (2014b) Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep 8:1354–1364PubMedPubMedCentralCrossRefGoogle Scholar
  22. Flashman E, Bagg EAL, Chowdhury R, Mecinović J, Loenarz C, McDonough MA, Hewitson KS, Schofield CJ (2008) Kinetic rationale for selectivity toward N- and C-terminal oxygen-dependent degradation domain substrates mediated by a loop region of hypoxia-inducible factor prolyl hydroxylases. J Biol Chem 283:3808–3815PubMedCrossRefGoogle Scholar
  23. Foote AD, Liu Y, Thomas GWC, Vinař T, Alföldi J, Deng J, Dugan S, van Elk CE, Hunter ME, Joshi V, Khan Z, Kovar C, Lee SL, Lindblad-Toh K, Mancia A, Nielsen R, Qin X, Qu J, Raney BJ, Vijay N, Wolf JBW, Hahn MW, Muzny DM, Worley KC, Gilbert MTP, Gibbs RA (2015) Convergent evolution of the genomes of marine mammals. Nat Genet 47:272–275PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ge RL, Kubo K, Kobayashi T, Sekiguchi M, Honda T (1998) Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am J Physiol 274:H1792–H1799PubMedGoogle Scholar
  25. Ge DY, Zhang ZQ, Xia L, Zhang Q, Ma Y, Yang QS (2012) Did the expansion of C4 plants drive extinction and massive range contraction of micromammals? Inferences from food preference and historical biogeography of pikas. Palaeogeogr Palaeoclimatol Palaeoecol 326–328:160–171Google Scholar
  26. Ge RL, Cai Q, Shen Y-Y, San A, Ma L, Zhang Y, Yi X, Chen Y, Yang L, Huang Y, He R, Hui Y, Hao M, Li Y, Wang B, Ou X, Xu J, Zhang Y, Wu K, Geng C, Zhou W, Zhou T, Irwin DM, Yang Y, Ying L, Bao H, Kim J, Larkin DM, Ma J, Lewin HA, Xing J, Platt RN, Ray DA, Auvil L, Capitanu B, Zhang X, Zhang G, Murphy RW, Wang J, Zhang Y-P, Wang J (2013) Draft genome sequence of the Tibetan antelope. Nat Commun 4:1858PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gompel N, Prud’homme B (2009) The causes of repeated genetic evolution. Dev Biol 332:36–47PubMedCrossRefGoogle Scholar
  28. Guindon S, Gascuel O, Rannala B (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefGoogle Scholar
  29. Hampton IF, Whittow GC (1976) Body temperature and heat exchange in the Hawaiian spinner dolphin, Stenella longirostris. Comp Biochem Physiol A Comp Physiol 55:195–197PubMedCrossRefGoogle Scholar
  30. Hashimoto O, Ohtsuki H, Kakizaki T, Amou K, Sato R, Doi S, Kobayashi S, Matsuda A, Sugiyama M, Funaba M, Matsuishi T, Terasawa F, Shindo J, Endo H (2015) Brown Adipose tissue in cetacean blubber. PLos One 10:e0116734PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hoffmann RS (1993) Order lagomorpha. In: Wilson DE, Reeder DM (eds) Mammalian species of the world, a taxonomic and geographic reference. Smithsonian Institution Press, Washington, pp 807–827Google Scholar
  32. Hu H, Petousi N, Glusman G, Yu Y, Bohlender R, Tashi T, Downie JM, Roach JC, Cole AM, Lorenzo FR, Rogers AR, Brunkow ME, Cavalleri G, Hood L, Alpatty SM, Prchal JT, Jorde LB, Robbins PA, Simonson TS, Huff CD (2017) Evolutionary history of Tibetans inferred from whole-genome sequencing. PLos Genet 13:e1006675PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hughes DA, Jastroch M, Stoneking M, Klingenspor M (2009) Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis. BMC Evol Biol 9:4PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jacobsson A, Stadler U, Glotzer MA, Kozak LP (1985) Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression. J Biol Chem 260:16250–16254PubMedGoogle Scholar
  35. Johansen K, Lykkeboe G, Weber RE, Maloiy GM (1976) Blood respiratory properties in the naked mole rat Heterocephalus glaber, a mammal of low body temperature. Respir Physiol 28:303–314PubMedCrossRefGoogle Scholar
  36. Kanwisher JW, Ridgway SH (1983) The physiological ecology of whales and porpoises. Sci Am 248:110–120CrossRefGoogle Scholar
  37. Keane M, Semeiks J, Webb AE, Li YI, Quesada V, Craig T, Madsen LB, van DS, Brawand, Marques D, Michalak PI, Kang P, Bhak L, Yim J, Grishin H-S, Nielsen NV, Heide-Jørgensen NH, Oziolor MP, Matson EM, Church CW, Stuart GM, Patton GW, George JC, Suydam JC, Larsen R, López-Otín K, O’Connell C, Bickham MJ, Thomsen JW, de Magalhães B JP (2015) Insights into the evolution of longevity from the bowhead whale genome. Cell Rep 10:112–122PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kim EB, Fang XD, Fushan AA, Huang ZY, Lobanov AV, Han LJ, Marino SM, Sun XQ, Turanov AA, Yang PC, Yim SH, Zhao X, Kasaikina MV, Stoletzki N, Peng CF, Polak P, Xiong ZQ, Kiezun A, Zhu YB, Chen YX, Kryukov GV, Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han CL, Li QY, Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang GJ, Wang J, Gladyshev VN (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479:223–227PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36PubMedPubMedCentralCrossRefGoogle Scholar
  40. Klingenberg M, Huang SG (1999) Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta 1415:271–296PubMedCrossRefGoogle Scholar
  41. Klingenspor M, Fromme T, Hughes DA, Manzke L, Polymeropoulos E, Riemann T, Trzcionka M, Hirschberg V, Jastroch M (2008) An ancient look at UCP1. Biochim Biophys Acta 1777:637–641PubMedCrossRefGoogle Scholar
  42. Knutti D, Kaul A, Kralli A (2000) A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol 20:2411–2422PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kosakovsky Pond SL, Frost SD (2005a) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533CrossRefGoogle Scholar
  44. Kosakovsky Pond SL, Frost SD (2005b) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222PubMedCrossRefGoogle Scholar
  45. Kovacs KM, Lydersen C, Overland JE, Moore SE (2011) Impacts of changing sea-ice conditions on Arctic marine mammals. Mar Biodiv 41:181–194CrossRefGoogle Scholar
  46. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedPubMedCentralCrossRefGoogle Scholar
  47. Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lemay MA, Henry P, Lamb CT, Robson KM, Russello MA (2013) Novel genomic resources for a climate change sensitive mammal: characterization of the American pika transcriptome. BMC Genom 14:311CrossRefGoogle Scholar
  49. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf 12:323CrossRefGoogle Scholar
  50. Li Q, Sun R, Huang C, Wang Z, Liu X, Hou J, Liu J, Cai L, Li N, Zhang S, Wang Y (2001) Cold adaptive thermogenesis in small mammals from different geographical zones of China. Comp Biochem Physiol A Mol Integr Physiol 129:949–961PubMedCrossRefGoogle Scholar
  51. Li HG, Ren YM, Guo SC, Cheng L, Wang DP, Yang J, Chang ZJ, Zhao XQ (2009) The protein level of hypoxia-inducible Factor-1 alpha is increased in the Plateau Pika (Ochotona curzoniae) inhabiting high altitudes. J Exp Zool A Ecol Genet Physiol 311:134–141PubMedCrossRefGoogle Scholar
  52. Li Y, Liu Z, Shi P, Zhang JZ (2010) The hearing gene Prestin unites echolocating bats and whales. Curr Biol 20:R55–R56PubMedCrossRefGoogle Scholar
  53. Li H, Guo S, Ren Y, Wang D, Yu H, Li W, Zhao X, Chang Z (2013) VEGF189 expression is highly related to adaptation of the Plateau Pika (Ochotona curzoniae) inhabiting high altitudes. High Alt Med Biol 14:395–404PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liao Y, Smyth GK, Shi W (2014) Feature counts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930CrossRefGoogle Scholar
  55. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, Kheradpour P, Ernst J, Jordan G, Mauceli E, Ward LD, Lowe CB, Holloway AK, Clamp M, Gnerre S, Alföldi J, Beal K, Chang J, Clawson H, Cuff J, Di Palma F, Fitzgerald S, Flicek P, Guttman M, Hubisz MJ, Jaffe DB, Jungreis I, Kent WJ, Kostka D, Lara M, Martins AL, Massingham T, Moltke I, Raney BJ, Rasmussen MD, Robinson J, Stark A, Vilella AJ, Wen J, Xie X, Zody MC, Baldwin J, Bloom T, Whye Chin C, Heiman D, Nicol R, Nusbaum C, Young S, Wilkinson J, Worley KC, Kovar CL, Muzny DM, Gibbs RA, Cree A, Dihn HH, Fowler G, Jhangiani S, Joshi V, Lee S, Lewis LR, Nazareth LV, Okwuonu G, Santibanez J, Warren WC, Mardis ER, Weinstock GM, Wilson RK, Delehaunty K, Dooling D, Fronik C, Fulton L, Fulton B, Graves T, Minx P, Sodergren E, Birney E, Margulies EH, Herrero J, Green ED, Haussler D, Siepel A, Goldman N, Pollard KS, Pedersen JS, Lander ES, Kellis M (2011) A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478:476–482PubMedPubMedCentralCrossRefGoogle Scholar
  56. Liu Y, Cotton JA, Shen B, Han X, Rossiter SJ, Zhang S (2010) Convergent sequence evolution between echolocating bats and dolphins. Curr Biol 20:R53–R54PubMedCrossRefGoogle Scholar
  57. Losos JB (2011) Convergence, adaptation, and constraint. Evolution 65:1827–1840PubMedCrossRefGoogle Scholar
  58. Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660CrossRefGoogle Scholar
  59. Maina JN, Gebreegziabher Y, Woodley R, Buffenstein R (2001) Effects of change in environmental temperature and natural shifts in carbon dioxide and oxygen concentrations on the lungs of captive naked mole-rats (Heterocephalus glaber): a morphological and morphometric study. J Zool Lond 253:371–382CrossRefGoogle Scholar
  60. Masson N, Ratcliffe PJ (2014) Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab 2:3PubMedPubMedCentralCrossRefGoogle Scholar
  61. Maxwell PH (2005) Hypoxia-inducible factor as a physiological regulator. Exp Physiol 90:791–797PubMedCrossRefGoogle Scholar
  62. McGinnis SM, Whittow GC, Ohata CA, Huber H (1972) Body heat dissipation and conservation in two species of dolphins. Comp Biochem Physiol A Comp Physiol 43:417–423PubMedCrossRefGoogle Scholar
  63. McGowen MR, Grossman LI, Wildman DE (2012) Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown. Proc Biol Sci 279:3643–3651PubMedPubMedCentralCrossRefGoogle Scholar
  64. Merkin J, Russell C, Chen P, Burge CB (2012) Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338:1593–1595PubMedPubMedCentralCrossRefGoogle Scholar
  65. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205CrossRefPubMedPubMedCentralGoogle Scholar
  66. Natarajan C, Projecto-Garcia J, Moriyama H, Weber RE, Muñoz-Fuentes V, Green AJ, Kopuchian C, Tubaro PL, Alza L, Bulgarella M, Smith MM, Wilson RE, Fago A, McCracken KG, Storz JF (2015) Convergent evolution of hemoglobin function in high-altitude andean waterfowl involves limited parallelism at the molecular sequence level. Plos Genet 11:e1005681PubMedPubMedCentralCrossRefGoogle Scholar
  67. Natarajan C, Hoffmann FG, Weber RE, Fago A, Witt CC, Storz JF (2016) Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science 354:336–339PubMedPubMedCentralCrossRefGoogle Scholar
  68. Nevo E, Ivanitskaya E, Beiles A (2001) Adaptive radiation of blind subterranean mole rats: naming and revisiting the four sibling species of the Spalax ehrenbergi superspecies in Israel: Spalax galili (2n = 52), S. golani (2n = 54), S. carmeli (2n = 58), and S. judaei (2n = 60). Backhuys, KerkwerveGoogle Scholar
  69. Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64:1–64PubMedCrossRefGoogle Scholar
  70. Noren DP, Williams TM, Berry P, Butler E (1999) Thermoregulation during swimming and diving in bottlenose dolphins, Tursiops truncatus. J Comp Physiol B 169:93–99PubMedCrossRefGoogle Scholar
  71. Panneton WM (2013) The Mammalian diving response: an enigmatic reflex to preserve life? Physiology 28:284–297PubMedCrossRefGoogle Scholar
  72. Parsons PA (2005) Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biol Rev 80:589–610CrossRefGoogle Scholar
  73. Pichon A, Zhenzhong B, Marchant D, Jin G, Voituron N, Haixia Y, Favret F, Richalet JP, Ge RL (2013) Cardiac adaptation to high altitude in the plateau pika (Ochotona curzoniae). Physiol Rep 1:e00032PubMedPubMedCentralCrossRefGoogle Scholar
  74. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839PubMedCrossRefGoogle Scholar
  75. Qi XZ, Wang XJ, Zhu SH, Rao XF, Wei L, Wei DB (2008) Hypoxic adaptation of the hearts of plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae). Acta Physiol Sin 60:348–354Google Scholar
  76. Qiu Q, Zhang GJ, Ma T, Qian WB, Wang JY, Ye ZQ, Cao CC, Hu QJ, Kim J, Larkin DM, Auvil L, Capitanu B, Ma J, Lewin HA, Qian XJ, Lang YS, Zhou R, Wang LZ, Wang K, Xia JQ, Liao SG, Pan SK, Lu X, Hou HL, Wang Y, Zang XT, Yin Y, Ma H, Zhang J, Wang ZF, Zhang YM, Zhang DW, Yonezawa T, Hasegawa M, Zhong Y, Liu WB, Zhang Y, Huang ZY, Zhang SX, Long RJ, Yang HM, Wang J, Lenstra JA, Cooper DN, Wu Y, Wang J, Shi P, Wang J, Liu JQ (2012) The yak genome and adaptation to life at high altitude. Nat Genet 44:946–949PubMedCrossRefGoogle Scholar
  77. Ramirez JM, Folkow LP, Blix AS (2007) Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu Rev Physiol 69:113–143PubMedCrossRefGoogle Scholar
  78. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25PubMedPubMedCentralCrossRefGoogle Scholar
  79. Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ryg M, Lydersen C, Knutsen LO, Bjorge A, Smith TG, Oritsland NA (1993) Scaling of insulation in seals and whales. J Zool Lond 230:193–206CrossRefGoogle Scholar
  82. Schmidt H, Malik A, Bicker A, Poetzsch G, Avivi A, Shams I, Hankeln T (2017) Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax—a liver transcriptomics approach. Sci Rep 7:14348PubMedPubMedCentralCrossRefGoogle Scholar
  83. Scholander PF, Schevill WE (1955) Counter-current vascular heat exchange in the fins of whales. J Appl Physiol 8:279–282PubMedCrossRefGoogle Scholar
  84. Shams I, Avivi A, Nevo E (2004) Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1. Proc Natl Acad Sci 101:9698–9703PubMedCrossRefGoogle Scholar
  85. Sheafor BA (2003) Metabolic enzyme activities across an altitudinal gradient: an examination of pikas (genus Ochotona). J Exp Biol 206:1241–1249PubMedCrossRefGoogle Scholar
  86. Skrovan RC, Williams TM, Berry PS, Moore PW, Davis RW (1999) The diving physiology of bottlenose dolphins (Tursiops truncatus)—II. Biomechanics and changes in buoyancy at depth. J Exp Biol 202:2749–2761PubMedGoogle Scholar
  87. Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14:751–764PubMedCrossRefGoogle Scholar
  88. Stern DL, Orgogozo V (2009) Is genetic evolution predictable? Science 323:746–751PubMedPubMedCentralCrossRefGoogle Scholar
  89. Storz JF (2016) Causes of molecular convergence and parallelism in protein evolution. Nat Rev Genet 17:239–250PubMedPubMedCentralCrossRefGoogle Scholar
  90. Struntz DJ, McLellan WA, Dillaman RM, Blum JE, Kucklick JR, Pabst DA (2004) Blubber development in bottlenose dolphins (Tursiops truncatus). J Morphol 259:7–20PubMedCrossRefGoogle Scholar
  91. Stuart JA, Harper JA, Brindle KM, Jekabsons MB, Brand MD (2001) A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem J 356:779–789PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sunagar K, Johnson WE, O’Brien SJ, Vasconcelos V, Antunes A (2012) Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction. Mol Biol Evol 29:1807–1822PubMedCrossRefGoogle Scholar
  93. Suzuki Y, Nei M (2002) Simulation study of the reliability and robustness of the statistical methods for detecting positive selection at single amino acid sites. Mol Biol Evol 19:1865–1869PubMedCrossRefGoogle Scholar
  94. Suzuki Y, Nei M (2004) False-positive selection identified by ML-based methods: examples from the Sig1 gene of the diatom Thalassiosira weissflogii and the tax gene of a human T-cell lymphotropic virus. Mol Biol Evol 21:914–921PubMedCrossRefGoogle Scholar
  95. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  96. Thewissen JGM, Cooper LN, George JC, Bajpai S (2009) From land to water: the origin of whales, dolphins, and porpoises. Evoluat Edu Outreach 2:272–288CrossRefGoogle Scholar
  97. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 22:4673–4680CrossRefGoogle Scholar
  98. Wang JM, Zhang YM, Wang DH (2006) Seasonal thermogenesis and body mass regulation in plateau pikas (Ochotona curzoniae). Oecologia 149:373–382PubMedCrossRefGoogle Scholar
  99. Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19:671–672PubMedCrossRefGoogle Scholar
  100. Yang Z (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118PubMedCrossRefGoogle Scholar
  101. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefGoogle Scholar
  102. Yang ZH, dos Reis M (2011) Statistical properties of the branch-site test of positive selection. Mol Biol Evol 28:1217–1228PubMedCrossRefGoogle Scholar
  103. Yang ZH, Nielsen R, Goldman N, Pedersen AMK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449PubMedPubMedCentralGoogle Scholar
  104. Yang J, Wang ZL, Zhao XQ, Wang de P, Qi de L, Xu BH, Ren YH, Tian HF (2008) Natural selection and adaptive evolution of leptin in the ochotona family driven by the cold environmental stress. PLos One 3:e1472PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yang J, Bromage TG, Zhao Q, Xu BH, Gao WL, Tian HF, Tang HJ, Liu DW, Zhao XQ (2011) Functional evolution of leptin of Ochotona curzoniae in adaptive thermogenesis driven by cold environmental stress. PLos One 6:e19833PubMedPubMedCentralCrossRefGoogle Scholar
  106. Yim HS, Cho YS, Guang X, Kang SG, Jeong JY, Cha SS, Oh HM, Lee JH, Yang EC, Kwon KK, Kim YJ, Kim TW, Kim W, Jeon JH, Kim SJ, Choi DH, Jho S, Kim HM, Ko J, Kim H, Shin YA, Jung HJ, Zheng Y, Wang Z, Chen Y, Chen M, Jiang A, Li E, Zhang S, Hou H, Kim TH, Yu L, Liu S, Ahn K, Cooper J, Park SG, Hong CP, Jin W, Kim HS, Park C, Lee K, Chun S, Morin PA, O’Brien SJ, Lee H, Kimura J, Moon DY, Manica A, Edwards J, Kim BC, Kim S, Wang J, Bhak J, Lee HS, Lee JH (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46:88–92PubMedCrossRefGoogle Scholar
  107. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhang J, Kumar S (1997) Detection of convergent and parallel evolution at the amino acid sequence level. Mol Biol Evol 14:527–536PubMedCrossRefGoogle Scholar
  109. Zhang N, Fu Z, Linke S, Chicher J, Gorman JJ, Visk D, Haddad GG, Poellinger L, Peet DJ, Powell F, Johnson RS (2010) The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metab 11:364–378PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zhao H, Yang JR, Xu H, Zhang J (2010) Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo. Mol Biol Evol 27:2669–2673PubMedPubMedCentralCrossRefGoogle Scholar
  111. Zhou X, Xu S, Yang Y, Zhou K, Yang G (2011) Phylogenomic analyses and improved resolution of Cetartiodactyla. Mol Phylogenet Evol 61:255–264PubMedCrossRefGoogle Scholar
  112. Zou Z, Zhang J (2015) Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations? Mol Biol Evol 32:2085–2096PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kangli Zhu
    • 1
  • Deyan Ge
    • 1
  • Zhixin Wen
    • 1
  • Lin Xia
    • 1
  • Qisen Yang
    • 1
  1. 1.Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina

Personalised recommendations