Identification and Analysis of OVATE Family Members from Genome of the Early Land Plants Provide Insights into Evolutionary History of OFP Family and Function

  • Meenakshi Dangwal
  • Sandip Das
Original Article


Mosses, liverworts, hornworts and lycophytes represent transition stages between the aquatic to terrestrial/land plants. Several morphological and adaptive novelties driven by genomic components including emergence and expansion of new or existing gene families have played a critical role during and after the transition, and contributed towards successful colonization of terrestrial ecosystems. It is crucial to decipher the evolutionary transitions and natural selection on the gene structure and function to understand the emergence of phenotypic and adaptive diversity. Plants at the “transition zone”, between aquatic and terrestrial ecosystem, are also the most vulnerable because of climate change and may contain clues for successful mitigation of the challenges of climate change. Identification and comparative analyses of such genetic elements and gene families are few in mosses, liverworts, hornworts and lycophytes. Ovate family proteins (OFPs) are plant-specific transcriptional repressors and are acknowledged for their roles in important growth and developmental processes in land plants, and information about the functional aspects of OFPs in early land plants is fragmentary. As a first step towards addressing this gap, a comprehensive in silico analysis was carried out utilizing publicly available genome sequences of Marchantia polymorpha (Mp), Physcomitrella patens (Pp), Selaginella moellendorffii (Sm) and Sphagnum fallax (Sf). Our analysis led to the identification of 4 MpOFPs, 19 PpOFPs, 6 SmOFPs and 3 SfOFPs. Cross-genera analysis revealed a drastic change in the structure and physiochemical properties in OFPs suggesting functional diversification and genomic plasticity during the evolutionary course. Knowledge gained from this comparative analysis will form the framework towards deciphering and dissection of their developmental and adaptive role/s in early land plants and could provide insights into evolutionary strategies adapted by land plants.


OVATE family proteins Marchantia Sphagnum Physcomitrella Selaginella 



The research has been supported and sponsored by the UGC under the UGC Dr. D.S. Kothari Post-Doctoral Fellowship Scheme to MD (Award Letter No.F.4-2/2006 (BSR)/BL/16-17/0032).

Author Contributions

MD compiled the data and performed analysis. MD and SD drafted the Manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

239_2018_9863_MOESM1_ESM.xlsx (20 kb)
Supplementary material 1 (XLSX 19 KB)
239_2018_9863_MOESM2_ESM.pdf (164 kb)
Supplementary material 2 (PDF 164 KB)
239_2018_9863_MOESM3_ESM.pdf (1.2 mb)
Supplementary material 3 (PDF 1278 KB)
239_2018_9863_MOESM4_ESM.pdf (251 kb)
Supplementary material 4 (PDF 250 KB)


  1. Aftabuddin M, Kundu S (2007) Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophys J 93:225–231CrossRefPubMedGoogle Scholar
  2. Baniaga AE, Arrigo N, Barker MS (2016) The small nuclear genomes of Selaginella are associated with a low rate of genome size evolution. Genome Biol Evol 8:1516–1525CrossRefPubMedPubMedCentralGoogle Scholar
  3. Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, de Pamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng C, Correa LGG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, Gramzow L, Gutensohn M, Harholt J, Hattori M, Heyl A, Hirai T, Hiwatashi Y, Ishikawa M, Iwata M, Karol KG, Koehler B, Kolukisaoglu U, Kubo M, Kurata T, Lalonde S, Li K, Li Y, Litt A, Lyons E, Manning G, Maruyama T, Michael TP, Mikami K, Miyazaki S, Morinaga S, Murata T, Mueller-Roeber B, Nelson DR, Obara M, Oguri Y, Olmstead RG, Onodera N, Petersen BL, Pils B, Prigge M, Rensing SA, Riaño-Pachón DM, Roberts AW, Sato Y, Scheller HV, Schulz B, Schulz C, Shakirov EV, Shibagaki N, Shinohara N, Shippen DE, Sørensen I, Sotooka R, Sugimoto N, Sugita M, Sumikawa N, Tanurdzic M, Theißen G, Ulvskov P, Wakazuki S, Weng J, Willats WWGT, Wipf D, Wolf PG, Yang L, Zimmer AD, Zhu Q, Mitros T, Hellsten U, Loqué D, Otillar R, Salamov A, Schmutz J, Shapiro H, Lindquist E, Lucas S, Rokhsar D, Grigoriev IV (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bornberg-Bauer E, Albà MM (2013) Dynamics and adaptive benefits of modular protein evolution. Curr Opin Struct Biol 23:459–466CrossRefPubMedGoogle Scholar
  5. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue S, Ichiro Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304.e15CrossRefPubMedGoogle Scholar
  6. Brown CJ, Johnson AK, Daughdrill GW (2010) Comparing models of evolution for ordered and disordered proteins. Mol Biol Evol 27:609–621CrossRefPubMedGoogle Scholar
  7. Caldwell R, Lin YX, Zhang R (2015) Comparisons between Arabidopsis thaliana and Drosophila melanogaster in relation to coding and noncoding sequence length and gene expression. Int J Genom 2015:13. Google Scholar
  8. Camps M, Herman A, Loh E, Loeb LA (2007) Genetic constraints on protein evolution. Crit Rev Biochem Mol Biol 42:313–326CrossRefPubMedGoogle Scholar
  9. Cheng S, Liu R, Gallie DR (2013) The unique evolution of the programmed cell death 4 protein in plants. BMC Evol Biol 13:199CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cheng F, Wu J, Cai X, Liang J, Freeling M, Wang X (2018) Differences in polyploid plants. Nat Plants. Google Scholar
  11. Dangwal M, Malik G, Kapoor S, Kapoor M (2013) De-novo methyltransferase, OsDRM2, interacts with the ATP-dependent RNA helicase, OseIF4A, in Rice. J Mol Biol 16:2853–2866CrossRefGoogle Scholar
  12. Dangwal M, Kapoor S, Kapoor M (2014) The PpCMT chromomethylase affects cell growth and interacts with the homolog of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens. Plant J 77:589–603CrossRefPubMedGoogle Scholar
  13. Fesenko I, Khazigaleeva R, Kirov I, Kniazev A, Glushenko O, Babalyan K, Arapidi G, Shashkova T, Butenko I, Zgoda V, Anufrieva K, Seredina A, Filippova A, Govorun V (2017) Alternative splicing shapes transcriptome but not proteome diversity in Physcomitrella patens. Sci Rep 7:1–14CrossRefGoogle Scholar
  14. Forslund K, Sonnhammer ELL (2012) Evolution of protein domain architectures. In: Anisimova M (ed) Evolutionary genomics. Methods in molecular biology (methods and protocols). Humana Press, New York, pp 187–216Google Scholar
  15. Gu Z, Cavalcanti A, Chen F-C, Bouman P, Li W-H (2002) Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol 19:256–262CrossRefPubMedGoogle Scholar
  16. Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci 102:4908–4912CrossRefPubMedGoogle Scholar
  17. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19:929–949CrossRefPubMedGoogle Scholar
  18. Hedrick UP, Booth NO (1907) Mendelian characters in tomato. Proc Am Soc Hortic Sci 5:19–24Google Scholar
  19. Huang L, Schiefelbein J (2015) Conserved gene expression programs in developing roots from diverse plants. Plant Cell 27:2119–2132CrossRefPubMedPubMedCentralGoogle Scholar
  20. Huang Z, Van Houten J, Gonzalez G, Xiao H, Van Der Knaap E (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genom 288:111–129CrossRefGoogle Scholar
  21. Hughes AL (2002) Adaptive evolution after gene duplication. Trends Genet 18:433–434CrossRefPubMedGoogle Scholar
  22. Hunt BG, Ometto L, Wurm Y, Shoemaker D, Yi SV, Keller L, Goodisman MAD (2011) Relaxed selection is a precursor to the evolution of phenotypic plasticity. Proc Natl Acad Sci 108:15936–15941CrossRefPubMedGoogle Scholar
  23. Jian-ping H, Hong-ling L, Ying C (2012) Genome-wide analysis of ovate family proteins in Arabidopsis. J Northeast Agric Univ (English Ed) 19:49–59CrossRefGoogle Scholar
  24. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, Depamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100CrossRefPubMedGoogle Scholar
  25. Jonathan Shaw A, Devos N, Liu Y, Cox CJ, Goffinet B, Flatberg KI, Shaw B (2016) Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). Ann Bot 118:185–196CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39CrossRefGoogle Scholar
  27. Kersting AR, Bornberg-Bauer E, Moore AD, Grath S (2012) Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution. Genome Biol Evol 4:316–329CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kiraga J, Mackiewicz P, Mackiewicz D, Kowalczuk M, Biecek P, Polak N, Smolarczyk K, Dudek MR, Cebrat S (2007) The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms. BMC Genom 8:163CrossRefGoogle Scholar
  29. Ku HM, Doganlar S, Chen KY, Tanksley SD (1999) The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 99:844–850CrossRefGoogle Scholar
  30. Ku HM, Liu J, Doganlar S, Tanksley SD (2001) Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovatecontaining region in tomato chromosome 2. Genome 44:470–475CrossRefPubMedGoogle Scholar
  31. Kubiak K, Nowak W (2008) Molecular dynamics simulations of the photoactive protein nitrile hydratase. Biophys J 94:3824–3838CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306CrossRefPubMedPubMedCentralGoogle Scholar
  33. La Cour T, Kiemer L, Mølgaard A, Gupta R, Skriver K, Brunak S (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17:527–536CrossRefPubMedGoogle Scholar
  34. Lei G, Shen M, Li ZG, Zhang B, Duan KX, Wang N, Cao YR, Zhang WK, Ma B, Ling HQ, Chen SY, Zhang JS (2011) EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant Cell Environ 34:1678–1692CrossRefPubMedGoogle Scholar
  35. Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12:1048–1059CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li J, Wu L-Q, Zheng W-Y, Wang R-F, Yang L-X (2015) Genome-wide identification of MicroRNAs responsive to high temperature in rice (Oryza sativa) by high-throughput deep sequencing. J Agron Crop Sci 201:379–388CrossRefGoogle Scholar
  37. Lipman DJ, Wilbur WJ (1991) Modelling neutral and selective evolution of protein folding. Proc Biol Sci 245:7–11CrossRefPubMedGoogle Scholar
  38. Little DP, Moran RC, Brenner ED, Stevenson DW (2007) Nuclear genome size in Selaginella. Genome 50:351–356CrossRefPubMedGoogle Scholar
  39. Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci 99:13302–13306CrossRefPubMedGoogle Scholar
  40. Liu D, Sun W, Yuan Y, Zhang N, Hayward A, Liu Y, Wang Y (2014) Phylogenetic analyses provide the first insights into the evolution of OVATE family proteins in land plants. Ann Bot 113:1219–1233CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ma Y, Yang C, He Y, Tian Z, Li J (2017) Rice OVATE family protein 6 regulates plant development and confers resistance to drought and cold stresses. J Exp Bot 68:4885–4898CrossRefPubMedGoogle Scholar
  42. Malik G, Dangwal M, Kapoor S, Kapoor M (2012) Role of DNA methylation in growth and differentiation in Physcomitrella patens and characterization of cytosine DNA methyltransferases. FEBS J 279(21):4081–4094CrossRefPubMedGoogle Scholar
  43. Marron AO, Akam M, Walker G (2012) Nitrile hydratase genes are present in multiple eukaryotic supergroups. PLoS ONE 7:1–10CrossRefGoogle Scholar
  44. Marsh JA, Teichmann SA (2010) How do proteins gain new domains? Genome Biol 11(7):126CrossRefPubMedPubMedCentralGoogle Scholar
  45. Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43:W566–W570CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mishra D, Shekhar S, Agrawal L, Chakraborty S, Chakraborty N (2017) Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defense pathways. Food Chem 221:1077–1087CrossRefPubMedGoogle Scholar
  47. Moore AD, Björklund ÅK, Ekman D, Bornberg-Bauer E, Elofsson A (2008) Arrangements in the modular evolution of proteins. Trends Biochem Sci 33:444–451CrossRefPubMedGoogle Scholar
  48. Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N (2009) Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136:2433–2444CrossRefPubMedGoogle Scholar
  49. Nagaoka N, Yamashita A, Kurisu R, Watari Y, Ishizuna F, Tsutsumi N, Ishizaki K, Kohchi T, Arimura SI (2017) DRP3 and ELM1 are required for mitochondrial fission in the liverwort Marchantia polymorpha. Sci Rep 7:1–10CrossRefGoogle Scholar
  50. Neduva V, Russell RB (2005) Linear motifs: evolutionary interaction switches. FEBS Lett 579:3342–3345CrossRefPubMedGoogle Scholar
  51. Nickrent DL, Parkinson CL, Palmer JH, Duff RJ (2000) Multigene phylogeny of land plants with special reference to bryophytes and the earlist land plants. Mol Biol Evol 17:1885–1895CrossRefPubMedGoogle Scholar
  52. Nishiyama R, Mizuno H, Okada S, Yamaguchi T, Takenaka M, Fukuzawa H, Ohyama K (1999) Two mRNA species encoding calcium-dependent protein kinases are differentially expressed in sexual organs of Marchantia polymorpha through alternative splicing. Plant Cell Physiol 40:205–212CrossRefPubMedGoogle Scholar
  53. Okano Y, Aono N, Hiwatashi Y, Murata T, Nishiyama T, Ishikawa T, Kubo M, Hasebe M (2009) A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc Natl Acad Sci USA 106:16321–16326CrossRefPubMedGoogle Scholar
  54. Ortiz-Ramírez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijó JAA, Becker JDD (2016) A transcriptome atlas of Physcomitrella patens provides insights into the evolution and development of land plants. Mol Plant 9:205–220CrossRefPubMedGoogle Scholar
  55. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE, 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–1612Google Scholar
  56. Price HC, Drinkard AW (1908) Inheritance in tomato hybrids. Va Agric Exp Stn Bull 177:17–53Google Scholar
  57. Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456CrossRefPubMedGoogle Scholar
  58. Rathore P, Geeta R, Das S (2016) Microsynteny and phylogenetic analysis of tandemly organized miRNA families across five members of Brassicaceae reveals complex retention and loss history. Plant Sci 247:35–48CrossRefPubMedGoogle Scholar
  59. Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, Van De Peer Y, Reski R (2007) An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol 7:1–10CrossRefGoogle Scholar
  60. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto SI, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Sung HC, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van De Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69CrossRefPubMedGoogle Scholar
  61. Renzaglia KS, Duff RJT, Nickrent DL, Garbary DJ (2000) Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philos Trans R Soc Lond B 355:769–793CrossRefGoogle Scholar
  62. Schmitz AJ, Begcy K, Sarath G, Walia H (2015) Rice ovate family protein 2 (OFP2) alters hormonal homeostasis and vasculature development. Plant Sci 241:177–188CrossRefPubMedGoogle Scholar
  63. Schwartz RM, Dayhoff MO (1979) Matrices for detecting distant relationships. Atlas Protein Seq Struct 5:353–358Google Scholar
  64. Schween G, Gorr G, Hohe A, Reski R (2003) Unique tissue-specific cell cycle in Physcomitrella. Plant Biol 5:50–58CrossRefGoogle Scholar
  65. Shekhar S, Mishra D, Gayali S, Buragohain AK, Chakraborty S, Chakraborty N (2016) Comparison of proteomic and metabolomic profiles of two contrasting ecotypes of sweetpotato (Ipomoea batata L.). J Proteom 143:306–317CrossRefGoogle Scholar
  66. Singh S, Das S, Geeta R (2018) A segmental duplication in the common ancestor of Brassicaceae is responsible for the origin of the paralogs KCS6-KCS5, which are not shared with other angiosperms. Mol Phylogenet Evol 126:331–345CrossRefPubMedGoogle Scholar
  67. Smith NG, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415:1022–1024CrossRefPubMedGoogle Scholar
  68. Subba P, Kumar R, Gayali S, Shekhar S, Parveen S, Pandey A, Datta A, Chakraborty S, Chakraborty N (2013) Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics 13:1973–1992CrossRefPubMedGoogle Scholar
  69. Szövényi P, Rensing SA, Lang D, Wray GA, Shaw AJ (2011) Generation-biased gene expression in a bryophyte model system. Mol Biol Evol 28:803–812CrossRefPubMedGoogle Scholar
  70. Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S (2012) Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci 109:19333–19338CrossRefPubMedGoogle Scholar
  71. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  72. Temsch EM, Greilhuber J, Krisai R (1998) Genome size in Sphagnum (peat moss). Bot Acta 111:325–330CrossRefGoogle Scholar
  73. Temsch E, Greilhuber J, Krisai R (2010) Genome size in liverworts. Preslia 82:63–80Google Scholar
  74. Vandromme M, Gauthier-Rouviere C, Lamb N, Fernandez A (1996) Regulation of transcription factor localization: fine tuning of gene expression. Trends Biochem Sci 21:59–64CrossRefPubMedGoogle Scholar
  75. Virgili G, Frank F, Feoktistova K, Sawicki M, Sonenberg N, Fraser CS, Nagar B (2013) Structural analysis of the DAP5 MIF4G domain and its interaction with eIF4A. Structure 21:517–527CrossRefPubMedPubMedCentralGoogle Scholar
  76. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  77. Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 6:1899–1916CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wang S, Chang Y, Guo J, Chen J-G (2007) Arabidopsis ovate family protein 1 is a transcriptional repressor that suppresses cell elongation. Plant J 50:858–872CrossRefPubMedGoogle Scholar
  79. Wang S, Chang Y, Guo J, Zeng Q, Ellis BE, Chen JG (2011) Arabidopsis ovate family proteins, a novel transcriptional repressor family, control multiple aspects of plant growth and development. PLoS ONE 6(8):e23896CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wang S, Chang Y, Ellis B (2016) Overview of OVATE FAMILY PROTEINS, a novel class of plant-specific growth regulators. Front Plant Sci 7:1–8PubMedPubMedCentralGoogle Scholar
  81. Weng J-K, Tanurdžić M, Chapple C (2005) Functional analysis and comparative genomics of expressed tags from the lycophyte Selaginella moellendorffii. BMC Genom 6:85CrossRefGoogle Scholar
  82. Xu L, Massagué J (2004) Nucleocytoplasmic shuttling of signal transducers. Nat Rev Mol Cell Biol 5:209–219CrossRefPubMedGoogle Scholar
  83. Yang C, Shen W, He Y, Tian Z, Li J (2016) OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice. PLoS Genet 12:1–15Google Scholar
  84. Yu H, Jiang W, Liu Q, Zhang H, Piao M, Chen Z, Bian M (2015) Expression pattern and subcellular localization of the ovate protein family in rice. PLoS ONE 10:1–19Google Scholar
  85. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298CrossRefGoogle Scholar
  86. Zhang L, Zhang X, Ju H, Chen J, Wang S, Wang H, Zhao Y, Chang Y (2016) Ovate family protein1 interaction with BLH3 regulates transition timing from vegetative to reproductive phase in Arabidopsis. Biochem Biophys Res Commun 470:492–497CrossRefPubMedGoogle Scholar
  87. Zhong B, Sun L, Penny D (2015) The origin of land plants: a phylogenomic perspective. Evol Bioinform 11:137–141CrossRefGoogle Scholar
  88. Zhu Y, Chen L, Zhang C, Hao P, Jing X, Li X (2017) Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii. BMC Genom 18:1–15CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BotanyUniversity of DelhiDelhiIndia

Personalised recommendations