Skip to main content
Log in

Cotranscriptional 3′-End Processing of T7 RNA Polymerase Transcripts by a Smaller HDV Ribozyme

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In vitro run-off transcription by T7 RNA polymerase generates heterogeneous 3′-ends because the enzyme tends to add untemplated adenylates. To generate homogeneous 3′-termini, HDV ribozymes have been used widely. Their sequences are added to the 3′-terminus such that co-transcriptional self-cleavage generates homogeneous 3′-ends. A shorter HDV sequence that cleaves itself efficiently would be advantageous. Here we show that a recently discovered, small HDV ribozyme is a good alternative to the previously used HDV ribozyme. The new HDV ribozyme is more efficient in some sequence contexts, and less efficient in other sequence contexts than the previously used HDV ribozyme. The smaller size makes the new HDV ribozyme a good alternative for transcript 3′-end processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avis JM, Conn GL, Walker SC (2012) Cis-acting ribozymes for the production of RNA in vitro transcripts with defined 5′ and 3′ ends. Methods Mol Biol 941:83–98

    Article  PubMed  CAS  Google Scholar 

  • Chadalavada DM, Knudsen SM, Nakano S, Bevilacqua PC (2000) A role for upstream RNA structure in facilitating the catalytic fold of the genomic hepatitis delta virus ribozyme. J Mol Biol 301:349–367

    Article  PubMed  CAS  Google Scholar 

  • Chumachenko NV, Novikov Y, Yarus M (2009) Rapid and simple ribozymic aminoacylation using three conserved nucleotides. J Am Chem Soc 131:5257–5263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curtis EA, Bartel DP (2005) New catalytic structures from an existing ribozyme. Nat Struct Mol Biol 12:994–1000

    Article  PubMed  CAS  Google Scholar 

  • Dolan GF, Akoopie A, Muller UF (2015) A faster triphosphorylation ribozyme. PLoS ONE 10:e0142559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferre-D’Amare AR, Doudna JA (1996) Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24:977–978

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoadley KA, Purtha WE, Wolf AC, Flynn-Charlebois A, Silverman SK (2005) Zn2+-dependent deoxyribozymes that form natural and unnatural RNA linkages. Biochemistry 44:9217–9231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Illangasekare M, Sanchez G, Nickles T, Yarus M (1995) Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267:643–647

    Article  PubMed  CAS  Google Scholar 

  • Jeong S, Sefcikova J, Tinsley RA, Rueda D, Walter NG (2003) Trans-acting hepatitis delta virus ribozyme: catalytic core and global structure are dependent on the 5′ substrate sequence. Biochemistry 42:7727–7740

    Article  PubMed  CAS  Google Scholar 

  • Kellerman DL, Simmons KS, Pedraza M, Piccirilli JA, York DM, Harris ME (2015) Determination of hepatitis delta virus ribozyme N(-1) nucleobase and functional group specificity using internal competition kinetics. Anal Biochem 483:12–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kost DM, Gerdt JP, Pradeepkumar PI, Silverman SK (2008) Controlling the direction of site-selectivity and regioselectivity in RNA ligation by Zn2+-dependent deoxyribozymes that use 2′,3′-cyclic phosphate RNA substrates. Org Biomol Chem 6:4391–4398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lau MW, Cadieux KE, Unrau PJ (2004) Isolation of fast purine nucleotide synthase ribozymes. J Am Chem Soc 126:15686–15693

    Article  PubMed  CAS  Google Scholar 

  • Lykke-Andersen J, Christiansen J (1998) The C-terminal carboxy group of T7 RNA polymerase ensures efficient magnesium ion-dependent catalysis. Nucleic Acids Res 26:5630–5635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62

    Article  PubMed  CAS  Google Scholar 

  • Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mörl M, Hartmann RK (2014) Production of RNAs with homogeneous 5′- and 3′-ends. In: Handbook of RNA biochemistry, 2nd edn, Wiley, Hoboken, pp 29–43

    Google Scholar 

  • Nishikawa F, Roy M, Fauzi H, Nishikawa S (1999) Detailed analysis of stem I and its 5′ and 3′ neighbor regions in the trans-acting HDV ribozyme. Nucleic Acids Res 27:403–410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price SR, Ito N, Oubridge C, Avis JM, Nagai K (1995) Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249:398–408

    Article  PubMed  CAS  Google Scholar 

  • Riccitelli NJ, Delwart E, Luptak A (2014) Identification of minimal HDV-like ribozymes with unique divalent metal ion dependence in the human microbiome. Biochemistry 53:1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein SP, Been MD (1990) Self-cleavage of hepatitis delta virus genomic strand RNA is enhanced under partially denaturing conditions. Biochemistry 29:8011–8016

    Article  PubMed  CAS  Google Scholar 

  • Ruminski DJ, Webb CH, Riccitelli NJ, Luptak A (2011) Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes. J Biol Chem 286:41286–41295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito H, Suga H (2001) A ribozyme exclusively aminoacylates the 3′-hydroxyl group of the tRNA terminal adenosine. J Am Chem Soc 123:7178–7179

    Article  PubMed  CAS  Google Scholar 

  • Schurer H, Lang K, Schuster J, Mörl M (2002) A universal method to produce in vitro transcripts with homogeneous 3′ ends. Nucleic Acids Res 30, e56

  • Semlow DR, Silverman SK (2005) Parallel selections in vitro reveal a preference for 2′-5′ RNA ligation upon deoxyribozyme-mediated opening of a 2′,3′-cyclic phosphate. J Mol Evol 61:207–215

    Article  PubMed  CAS  Google Scholar 

  • Tanner NK, Schaff S, Thill G, Petit-Koskas E, Crain-Denoyelle AM, Westhof E (1994) A three-dimensional model of hepatitis delta virus ribozyme based on biochemical and mutational analyses. Curr Biol 4:488–498

    Article  PubMed  CAS  Google Scholar 

  • Triana-Alonso FJ, Dabrowski M, Wadzack J, Nierhaus KH (1995) Self-coded 3′-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J Biol Chem 270:6298–6307

    Article  PubMed  CAS  Google Scholar 

  • Unrau PJ, Bartel DP (1998) RNA-catalysed nucleotide synthesis. Nature 395:260–263

    Article  PubMed  CAS  Google Scholar 

  • Walker SC, Avis JM, Conn GL (2003) General plasmids for producing RNA in vitro transcripts with homogeneous ends. Nucleic Acids Res 31:e82

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb CH, Riccitelli NJ, Ruminski DJ, Luptak A (2009) Widespread occurrence of self-cleaving ribozymes. Science 326:953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaher HS, Unrau PJ (2004) T7 RNA polymerase mediates fast promoter-independent extension of unstable nucleic acid complexes. Biochemistry 43:7873–7880

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Andrej Luptak for helpful discussions. Partial support to U.F.M came from grant NASA NNX13AJ09G and NASA grant NNX16AJ27G. Support for A.A. was provided by a 2015/2016 Department of Education Graduate Assistance in Areas of National Need (GAANN) Training Grant # P200A150251, and by a 2016 Distinguished Graduate Student Fellowship by the Department of Chemistry & Biochemistry at UC San Diego.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich F. Müller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akoopie, A., Müller, U.F. Cotranscriptional 3′-End Processing of T7 RNA Polymerase Transcripts by a Smaller HDV Ribozyme. J Mol Evol 86, 425–430 (2018). https://doi.org/10.1007/s00239-018-9861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-018-9861-9

Keywords

Navigation