Scratching the Surface of an Itch: Molecular Evolution of Aculeata Venom Allergens

Abstract

Hymenopteran insects are infamous for their sting, and their ability to cause severe anaphylaxis and in some cases death. This allergic reaction is a result of allergens present in the venom. Hymenopterans have many common venom allergens, the most widespread of which include phospholipase A1, phospholipase A2, acid phosphatase, hyaluronidase, serine protease and antigen 5. While there have been studies that look at the phylogenetic histories of allergens within closely related species, to our knowledge, this is the first study using evolutionary analyses to compare across Hymenoptera the types of selection that are occurring on allergens. This research examined the publicly available sequences of six different groups of allergens and found that allergens had diverged and formed closely related clades which share greater sequence similarities. We also analysed the patterns of selection and found that they are predominately under the influence of negative selection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Basheer AR, El-Asmar MF, Soslau G (1995) Characterization of a potent platelet aggregation inducer from Cerastes cerastes (Egyptian sand viper) venom. Biochimica et Biophysica Acta (BBA) (Protein Struct Mol Enzymol) 1250(1):97–109

    Article  Google Scholar 

  2. Bateman A, O’Donovan C, Magrane M, Alpi E, Antunes R, Bely B et al (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D1

    Google Scholar 

  3. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2006) GenBank. Nucleic Acids Res 34(Database issue):D16–D20

    Article  PubMed  CAS  Google Scholar 

  4. Bilò MB (2011) Anaphylaxis caused by Hymenoptera stings: from epidemiology to treatment. Allergy 66(Suppl 9):35–37

    Article  PubMed  Google Scholar 

  5. Bircher AJ (2005) Systemic immediate allergic reactions to arthropod stings and bites. Dermatology 210(2):119–127

    Article  PubMed  Google Scholar 

  6. Brust A, Sunagar K, Undheim EAB, Vetter I, Yang DC, Yang DC et al (2013) Differential evolution and neofunctionalization of snake venom metalloprotease domains. Mol Cell Proteomics 12(3):651–663

    Article  PubMed  CAS  Google Scholar 

  7. Casewell NR, Wagstaff SC, Harrison RA, Renjifo C, Wuster W (2011) Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol Biol Evol 28(9):2637–2649

    Article  PubMed  CAS  Google Scholar 

  8. Casewell NR, Huttley GA, Wüster W (2012) Dynamic evolution of venom proteins in squamate reptiles. Nat Commun 3(1):1066–1066

    Article  PubMed  CAS  Google Scholar 

  9. Dunlop JA, Selden PA (2009) Calibrating the chelicerate clock: a paleontological reply to Jeyaprakash and Hoy. Exp Appl Acarol 48(3):183–197

    Article  PubMed  Google Scholar 

  10. Dutertre S, Jin A-H, Vetter I, Hamilton B, Sunagar K, Lavergne V et al (2014) Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun 5:3521–3521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF et al (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10:483–511

    Article  PubMed  CAS  Google Scholar 

  13. Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  14. Harrison RA, Ibison F, Wilbraham D, Wagstaff SC (2007) Identification of cDNAs encoding viper venom hyaluronidases: cross-generic sequence conservation of full-length and unusually short variant transcripts. Gene 392(1–2):22–33

    Article  PubMed  CAS  Google Scholar 

  15. Henriksen A, King TP, Mirza O, Monsalve RlI, Meno Kr, Ipsen H et al (2001) Major venom allergen of yellow jackets, Ves v 5: structural characterization of a pathogenesis-related protein superfamily. Proteins Struct Funct Genet 45(4):438–448

    Article  PubMed  CAS  Google Scholar 

  16. Hoffman DR (2006) Hymenoptera venom allergens. Clin Rev Allergy Immunol 30(2):109–128

    Article  PubMed  CAS  Google Scholar 

  17. Hoffman DR (2008) Structural biology of allergens from stinging and biting insects. Curr Opin Allergy Clin Immunol 8(4):338–342

    Article  PubMed  CAS  Google Scholar 

  18. Jouiaei M, Sunagar K, Gross AF, Scheib H, Alewood PF, Moran Y, Fry BG (2015) Evolution of an ancient venom: recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone. Mol Biol Evol 32:1598–1610

    Article  PubMed  CAS  Google Scholar 

  19. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. King TP, Wittkowski KM (2011) Hyaluronidase and hyaluronan in insect venom allergy. Int Arch Allergy Immunol 156(2):205–211

    Article  PubMed  CAS  Google Scholar 

  21. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30(22):3276–3278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lynch VJ (2007) Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A 2 genes. BMC Evol Biol 7(1):2–2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mirza O, Henriksen A, Ipsen H, Larsen JN, Wissenbach M, Spangfort MD, Gajhede M (2000) Dominant epitopes and allergic cross-reactivity: complex formation between a Fab fragment of a monoclonal murine IgG antibody and the major allergen from birch pollen Bet v 1. J Immunol (Baltimore Md: 1950) 165(1):331–338

    Article  CAS  Google Scholar 

  24. Murayama N, Saguchi Ki, Mentele R, Assakura MT, Ohi H, Fujita Y et al (2003) The unusual high molecular mass of Bothrops protease A, a trypsin-like serine peptidase from the venom of Bothrops jararaca, is due to its high carbohydrate content. Biochimica et biophysica acta 1652(1):1–6

    Article  PubMed  CAS  Google Scholar 

  25. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond K, S. L (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8(7):e1002764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K (2013) FUBAR: a fast, unconstrained Bayesian AppRoximation for inferring selection. Mol Biol Evol 30(5):1196–1205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Palma MS (2013) Handbook of biologically active peptides, 2nd edn. Elsevier, New York

    Google Scholar 

  28. Park E, Hwang D-S, Lee J-S, Song J-I, Seo T-K, Won Y-J (2012) Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Mol Phylogenet Evol 62(1):329–345

    Article  PubMed  Google Scholar 

  29. Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K et al (2017) Evolutionary history of the Hymenoptera. Curr Biol 27(7):1013–1018

    Article  PubMed  CAS  Google Scholar 

  30. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  PubMed  CAS  Google Scholar 

  31. Pond SK, Muse SV (2005) Site-to-site variation of synonymous substitution rates. Mol Biol Evol 22(12):2375–2385

    Article  PubMed  CAS  Google Scholar 

  32. Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H (2008) Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol 121(4):847–852.e847

    Article  PubMed  CAS  Google Scholar 

  33. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ruder T, Sunagar K, Undheim EAB, Ali SA, Wai T-C, Low DHW et al (2013) Molecular phylogeny and evolution of the proteins encoded by coleoid (cuttlefish, octopus, and squid) posterior venom glands. J Mol Evol 76(4):192–204

    Article  PubMed  CAS  Google Scholar 

  35. Schmidt JO (2009) Defensive behavior, Elsevier, New York, pp 252–257

    Google Scholar 

  36. Sunagar K, Moran Y (2015) The rise and fall of an evolutionary innovation: contrasting strategies of venom evolution in ancient and young animals. PLoS Genet 11(10):e1005596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sunagar K, Johnson WE, O’Brien SJ, Vasconcelos V, Antunes A (2012) Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction. Mol Biol Evol 29(7):1807–1822

    Article  PubMed  CAS  Google Scholar 

  38. Sunagar K, Fry BG, Jackson TNW, Casewell NR, Undheim EAB, Vidal N et al (2013a) Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf. PLoS ONE 8(11):e81827–e81827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sunagar K, Jackson TNW, Undheim EAB, Ali SA, Antunes A, Fry BG (2013b) Three-fingered RAVERs: rapid accumulation of variations in exposed residues of snake venom toxins. Toxins 5(11):2172–2208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sunagar K, Undheim EAB, Chan AHC, Koludarov I, Muñoz-Gómez SA, Antunes A, Fry BG (2013c) Evolution stings: the origin and diversification of scorpion toxin peptide scaffolds. Toxins 5(12):2456–2487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sunagar K, Undheim EaB, Scheib H, Gren ECK, Cochran C, Person CE et al (2014) Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications. J Proteomics 99:68–83

    Article  PubMed  CAS  Google Scholar 

  42. Suzuki N, Yamazaki Y, Fujimoto Z, Morita T, Mizuno H (2005) Crystallization and preliminary X-ray diffraction analyses of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels. Acta Crystallogr F 61(Pt 8):750–752

    Article  CAS  Google Scholar 

  43. Tsai I-H, Tsai H-Y, Wang Y-M, Tun P, Warrell DA (2007) Venom phospholipases of Russell’s vipers from Myanmar and eastern India—Cloning, characterization and phylogeographic analysis. Biochimica et Biophysica Acta (BBA) (Proteins Proteomics) 1774(8):1020–1028

    Article  CAS  Google Scholar 

  44. Yamazaki Y, Brown RL, Morita T (2002) Purification and cloning of toxins from elapid venoms that target cyclic nucleotide-gated ion channels. Biochemistry 41(38):11331–11337

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

KB and DB were supported by University of Queensland PhD scholarships. This work was also supported by the Department of Science and Technology (DST) INSPIRE Faculty Award (DST/INSPIRE/04/2017/000071) to KS and the DBT-IISc Partnership Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bryan Fry.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baumann, K., Dashevsky, D., Sunagar, K. et al. Scratching the Surface of an Itch: Molecular Evolution of Aculeata Venom Allergens. J Mol Evol 86, 484–500 (2018). https://doi.org/10.1007/s00239-018-9860-x

Download citation

Keywords

  • Venom evolution
  • Toxin
  • Hymenoptera
  • Allergen