Advertisement

Investigation on the Evolutionary Relation of Diverse Polyhydroxyalkanoate Gene Clusters in Betaproteobacteria

  • Gurusamy Kutralam-Muniasamy
  • Rodolfo Marsch
  • Fermín Pérez-Guevara
Original Article
  • 46 Downloads

Abstract

Products of numerous genes (phaC, phaA, phaB, phaP, phaR, and phaZ) are involved in the synthesis and degradation processes of the ubiquitous prokaryotic polyhydroxyalkanoate (PHA) intracellular reserve storage system. In this study, we performed a bioinformatics analysis to identify PHA-related genes and proteins in the genome of 66 selected organisms (class: Betaproteobacteria) that occur in various habitats; besides, evolutionary trajectories of the PHA system are reported here. The identified PHA-related genes were organized into clusters, and the gene arrangement was highly diverse. The occurrence and distribution of PHA-related clusters revealed that a single cluster was primarily segmented into small gene groups among various genomes, which were further reorganized as novel clusters based on various functional genes. The individual phylogenies of gene and protein sequences supported that the clusters were assembled through the relocation of native orthologous genes that underwent insertion, deletion, and elongation events. Furthermore, the neighboring genes provided valuable evolutionary and functional cues regarding the conservation and maintenance of PHA-related genes in the genome. Overall, the aforementioned results strongly indicate the influence of horizontal gene transfer on the organization of PHA-related gene clusters. Therefore, our results reveal new insights into the organization, evolutionary history, and cluster conservation of the PHA-related gene inventories among Betaproteobacterial organisms.

Keywords

Burkholderiaceae Cupriavidus necator H16 Phylogeny Flanking gene Gene relocation Horizontal gene transfer 

Notes

Acknowledgements

The authors express gratitude to Consejo Nacional de Ciencia y Tecnología (CB-2014-01; 236285 and Fronteras de la Ciencia 2015-1: 016) for financial support. The authors thank Miguel Angel Martínez Roque (UPIBI-IPN) for his assistance with data collection and artwork of this study. We are very grateful to Joel Alba Flores (Biotechnology and Bioengineering, CINVESTAV) and Ravi-Kumar Narayanasamy (Central University of Tamil Nadu) for fruitful discussions and valuable suggestions. We thank the editor and anonymous reviewer for their insightful comments, which helped us to improve the manuscript.

Supplementary material

239_2018_9859_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 KB)
239_2018_9859_MOESM2_ESM.jpg (6 mb)
Table S2 Habitat characteristics of the representative Betaproteobacterial organisms (n = 66) (JPG 6142 KB)
239_2018_9859_MOESM3_ESM.jpg (979 kb)
Fig. S1 Bayesian phylogeny of PhaB protein homologs of Rhodocyclaceae. Numbers at the nodes denote posterior probabilities (JPG 978 KB)
239_2018_9859_MOESM4_ESM.jpg (2.2 mb)
Fig. S2 Phylogeny of phaB indicates multiple independent duplication events throughout its evolutionary history. (D: Duplication events). The reconciled phaB phylogenetic tree was obtained by means of NOTUNG v.2.9. It depicts 22 independent gene duplication events. All the duplication events appear toward the terminal nodes of the phylogenetic tree, indicating that these are recent events. Note: The homology analysis between phaB copies [phaB(1) and phaB(2)] revealed that they are merely <60% identical to each other. The results of the phylogeny analysis uncovered duplications (Fig. 2). Of note, gene duplications in the phaB gene family were found to initiate at the primary nodes of the reconciled phylogeny tree (Online Resource Fig. S2). According to these observations and wide variation in the sequence homology between the phaB copies, it is impossible to formulate a hypothesis regarding the duplication and speciation events after the emergence of Betaproteobacteria. Therefore, our interpretation is that the duplication and speciation occurred prior to the emergence of Betaproteobacteria. This assumption is supported by the orthologous relation of phaB genes as depicted in Fig. 2 and Online Resource Fig. S1. Nevertheless, the probable variations in the clade separation suggest that phaB1 instead of phaB2 might have been incorporated into the cluster during the evolutionary period of Betaproteobacteria. In-depth research is necessary to document the functional divergence (in terms of substrate specificity and enzymatic activity) of PhaB proteins in Betaproteobacteria (JPG 2.17 MB)
239_2018_9859_MOESM5_ESM.jpg (2.5 mb)
Fig. S3 Bayesian phylogeny trees of (a) PhaC, (b) PhaA, and (c) PhaR proteins. Numbers at the nodes indicate posterior probabilities (JPG 2.49 MB)
239_2018_9859_MOESM6_ESM.jpg (3.5 mb)
Fig. S4 Phylogenetic incongruence of (a) phaC and 16S rRNA gene sequences (JPG 3.50 MB)
239_2018_9859_MOESM7_ESM.jpg (3.4 mb)
Fig. S4 Phylogenetic incongruence of (b) of phaA and 16S rRNA gene sequences (JPG 3.37 MB)
239_2018_9859_MOESM8_ESM.jpg (3.5 mb)
Fig. S4 Phylogenetic incongruence of (c) of phaR and 16S rRNA gene sequences (JPG 3.46 MB)

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrère S, Cruveiller S, Dossat C, Lajus A (2008) Genome sequence of the β-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bernd H (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33CrossRefGoogle Scholar
  4. Desetty RD, Mahajan VS, Khan BM, Rawal SK (2008) Isolation and heterologous expression of PHA synthesising genes from Bacillus thuringiensis R1. World J Microbiol Biotechnol 24:1769–1774CrossRefGoogle Scholar
  5. Durand D, Halldórsson BV, Vernot B (2006) A hybrid micro–macroevolutionary approach to gene tree reconstruction. J Comput Biol 13:320–335CrossRefPubMedGoogle Scholar
  6. Gutgsell NS, Deutscher MP, Ofengand J (2005) The pseudouridine synthase RluD is required for normal ribosome assembly and function in Escherichia coli. RNA 11:1141–1152CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hiroe A, Tsuge K, Nomura CT, Itaya M, Tsuge T (2012) Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli. Appl Environ Microbiol 78:3177–3184CrossRefPubMedPubMedCentralGoogle Scholar
  8. Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeño-Tárraga AM, Thomson NR, Bason N, Quail MA, Sharp S (2009) The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 191:261–277CrossRefPubMedGoogle Scholar
  9. Hughes D (2000) Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes. Genome Biol.  https://doi.org/10.1186/gb-2000-1-6-reviews0006 PubMedPubMedCentralGoogle Scholar
  10. Ihssen J, Reiss R, Luchsinger R, Thöny-Meyer L, Richter M (2015) Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci Rep 5:10465CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jang SH, Am Jang H, Lee JB, Kim JU, Lee SA, Park K-E, Kim BH, Jo YH, Lee BL (2017) PhaR, a negative regulatory protein of PhaP, modulates the colonization of Burkholderia gut symbiont in the midgut of the host insect, Riptortus pedestris. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.00459-17 Google Scholar
  12. Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Medigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS ONE 5:e10433CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26CrossRefPubMedGoogle Scholar
  15. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  16. Karlin S, Mrázek J (2000) Predicted highly expressed genes of diverse prokaryotic genomes. J Bacteriol 182:5238–5250CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kovács K, Hurst LD, Papp B (2009) Stochasticity in protein levels drives colinearity of gene order in metabolic operons of Escherichia coli. PLoS Biol 7:e1000115CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kutralam-Muniasamy G, Corona-Hernandez J, Narayanasamy RK, Marsch R, Pérez-Guevara F (2017) Phylogenetic diversification and developmental implications of poly-(R)-3-hydroxyalkanoate gene cluster assembly in prokaryotes. FEMS Microbiol Lett 364:fnx135CrossRefGoogle Scholar
  19. Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  20. Lee K-H, Saleh L, Anton BP, Madinger CL, Benner JS, Iwig DF, Roberts RJ, Krebs C, Booker SJ (2009) Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily. Biochemistry 48:10162CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li R, Zhang H, Qi Q (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98:2313–2320CrossRefPubMedGoogle Scholar
  22. Li X, Zhang L, Wang G (2014) Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. PloS ONE 9:e92236CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lim HN, Lee Y, Hussein R (2011) Fundamental relationship between operon organization and gene expression. Proc Nat Acad Sci 108:10626–10631CrossRefPubMedGoogle Scholar
  24. Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedPubMedCentralGoogle Scholar
  25. Monsieurs P, Provoost A, Mijnendonckx K, Leys N, Gaudreau C, Van Houdt R (2013) Genome sequence of Cupriavidus metallidurans Strain H1130, isolated from an invasive human infection. Genome Announc 1:e01051–e01013CrossRefPubMedPubMedCentralGoogle Scholar
  26. Osbourn AE, Field B (2009) Operons Cell Mol Life Sci 66:3755–3775CrossRefPubMedGoogle Scholar
  27. Peralta-Gil M, Segura D, Guzmán J, Servín-González L, Espín G (2002) Expression of the Azotobacter vinelandii poly-β-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. Bacteriol 184:5672–5677CrossRefGoogle Scholar
  28. Pérez-Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, González B (2012) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 14:1091–1117CrossRefPubMedGoogle Scholar
  29. Pfeiffer D, Jendrossek D (2012) Localization of poly(3-hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16. J Bacteriol 194:5909–5921CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbuchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262CrossRefPubMedGoogle Scholar
  31. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  32. Pötter M, Steinbüchel A (2006) Biogenesis and structure of polyhydroxyalkanoate granules inclusions in prokaryotes. Springer, BerlinGoogle Scholar
  33. Price MN, Arkin AP, Alm EJ (2006) The life-cycle of operons. PLoS Genet 2:e96CrossRefPubMedPubMedCentralGoogle Scholar
  34. Reams AB, Neidle EL (2004) Selection for gene clustering by tandem duplication. Ann Rev Microbiol 58:119–142CrossRefGoogle Scholar
  35. Reinecke F, Steinbüchel A (2008) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91–108CrossRefPubMedGoogle Scholar
  36. Rogozin IB, Makarova KS, Murvai J, Czabarka E, Wolf YI, Tatusov RL, Szekely LA, Koonin EV (2002) Connected gene neighborhoods in prokaryotic genomes. Nucleic Acids Res 30:2212–2223CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sandoval A, Arias-Barrau E, Arcos M, Naharro G, Olivera ER, Luengo JM (2007) Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environ Microbiol 9:737–751CrossRefPubMedGoogle Scholar
  39. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847CrossRefPubMedPubMedCentralGoogle Scholar
  40. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolases mediate poly (β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987PubMedPubMedCentralGoogle Scholar
  41. Vernot B, Stolzer M, Goldman A, Durand D (2008) Reconciliation with non-binary species trees. J Comput Biol 15:981–1006CrossRefPubMedPubMedCentralGoogle Scholar
  42. Voloshin ON, Camerini-Otero RD (2007) The DinG protein from Escherichia coli is a structure-specific helicase. J Biol Chem 282:18437–18447CrossRefPubMedGoogle Scholar
  43. Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D (2012) PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol 12:262CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wells JN, Bergendahl LT, Marsh JA (2016) Operon gene order is optimized for ordered protein complex assembly. Cell Rep 14:679–685CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235–245CrossRefPubMedGoogle Scholar
  46. Yee LN, Chuah JA, Chong ML, Phang LY, Raha AR, Sudesh K, Hassan MA (2012) Molecular characterisation of phaCAB from Comamonas sp. EB172 for functional expression in Escherichia coli JM109. Microbiol Res 167:550–557CrossRefPubMedGoogle Scholar
  47. Zaslaver A, Mayo A, Ronen M, Alon U (2006) Optimal gene partition into operons correlates with gene functional order. Phys Biol 3:183CrossRefPubMedGoogle Scholar
  48. Zuleta LFG, de Oliveira Cunha C, De Carvalho FM, Ciapina LP, Souza RC, Mercante FM, De Faria SM, Baldani JI, Straliotto R, Hungria M (2014) The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes. BMC Genom 15:535CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gurusamy Kutralam-Muniasamy
    • 1
  • Rodolfo Marsch
    • 1
  • Fermín Pérez-Guevara
    • 1
    • 2
  1. 1.Department of Biotechnology and BioengineeringCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexicoMexico
  2. 2.Nanoscience & Nanotechnology ProgramCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexicoMexico

Personalised recommendations