Advertisement

Journal of Molecular Evolution

, Volume 86, Issue 6, pp 404–423 | Cite as

Retroelements and DNA Methylation Could Contribute to Diversity of 5S rDNA in Agave L.

  • Y. J. Tamayo-Ordóñez
  • J. A. Narváez-Zapata
  • M. C. Tamayo-Ordóñez
  • L. F. Sánchez-Teyer
Original Article

Abstract

Agave L. is a genus of economic importance, and many of the 166 species in the American plant genus Agave L. inhabit high-stress environments, which makes the genus promising for facing global climate change. However, sustainable use of economically important species without interfering with their ecology and evolution requires generating knowledge about the factors responsible for their genetic variation and diversity and, on this basis, their adaptation and speciation. Few genetic studies exploring the evolutionary relationships, speciation processes, genetic variability and diversity within species of Agave are currently available. Analyses of rDNA loci have been performed with the purpose of determining the genetic variability and diversity of the genus Agave, and these loci have been used as genetic markers of ploidy. However, the factors involved in the diversity of 5S rDNA regions in Agave have not yet been studied in depth. Our study explored the possible mechanisms of genetic (retroelements) and epigenetic (DNA methylation) diversity in 5S rDNA regions in Agave. We characterized the 5S rDNA gene tandem in species of the genus with different ploidy numbers and determined the levels of methylation in 13 haplotypes of 5S rDNA and in four non-transcribed spacers (NTS). Our results showed highly dynamic methylation with a high percentage in haplotypes and NTS of 5S rDNA regions in Agave. The characterization of the 5S rDNA tandem array in Agave revealed vestigial remains of the Cassandra terminal-repeat retrotransposon in miniature (TRIM). Our analysis supported previous results suggesting that in species of Agave L., regulation and diversity of 5S rDNA regions are controlled by coordinated genetic and epigenetic events, which will vary according to the species and the level of ploidy. The artificial pressure to which some agave crops are subjected may affect the mechanisms of evolution of gene 5S rDNA.

Keywords

Agave L. Polyploids DNA methylation Retroelements 5S rDNA 

Notes

Acknowledgements

The authors wish to express their gratitude to M.C. Miriam Monforte González for her contribution and orientation to the sequencing services for clones from the BIBAC genomic library of A. tequilana. Thanks are also given to Dr. Benjamin Abraham Ayil Gutierrez for his contribution in the figures and to M.C. Erika A. De la Cruz-Arguijo for her technical assistance in the sequencing of the clones using the ABI PRISM model 377 sequencer.

Funding

This work was supported by projects 50268 and 180757 of the Center of Scientific Research of Yucatán and the Genomic Biotechnology Center of the National Polytechnic Institute.

Supplementary material

239_2018_9856_MOESM1_ESM.doc (459 kb)
Additional file 1 (DOC 459 KB)
239_2018_9856_MOESM2_ESM.docx (35 kb)
Supplementary material 2 (DOCX 35 KB)

References

  1. Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100(8):4649–4654CrossRefGoogle Scholar
  2. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48CrossRefGoogle Scholar
  3. Baneerjee S, Sharma AK (1987) Cytophotometric estimation of nuclear DNA in different species and varieties of Agave. Cytologia 52:85–90Google Scholar
  4. Bautista R, Villalobos DP, Diaz-Moreno S, Cantun FR, Canovas FM, Gonzalo Claros M (2008) Nueva estrategia para la construcción de una genoteca genómica de Pinus pinaster en cromosomas artificiales de bacterias. Sistemas y Recursos Forestales 3:238–249Google Scholar
  5. Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetic 115(1):29–36Google Scholar
  6. Bimboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7(6):1513–1523CrossRefGoogle Scholar
  7. Castorena-Sánchez I, Escóbedo RM, Quiroz A (1991) New cytotaxonomical determinants recognized in six taxa of Agave in the sections Rigidae and Sisalanae. Can J Bot 69(6):1257–1264CrossRefGoogle Scholar
  8. Cavallini A, Natali L, Cionini G, Castorena-Sanchez I (1995) Cytophotometric and biochemical analyses of DNA in pentaploid and diploid Agave species. Genome 39(2):266–271Google Scholar
  9. Chacón J, Sousa A, Baeza CM, Renner SS (2012) Ribosomal DNA distribution and a genus-wide phylogeny reveal patterns of chromosomal evolution in Alstroemeria (Alstroemeriaceae). Am J Bot 99(9):1501–1512CrossRefGoogle Scholar
  10. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Ann Rev Plant Biol 58:377–406CrossRefGoogle Scholar
  11. Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15(2):57–71CrossRefGoogle Scholar
  12. Cioffi MB, Martins C, Bertollo LA (2010) Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol 10(1):271CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cloix C, Tutois S, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S (2000) Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genome Res 10(5):679–690CrossRefGoogle Scholar
  14. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219CrossRefGoogle Scholar
  15. De-la-Peña C, Nic-Can G, Ojeda G, Herrera-Herrera JL, López-Torres A, Wrobel K, Robert-Díaz ML (2012) KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp. BMC Plant Biol 12(1):203CrossRefPubMedPubMedCentralGoogle Scholar
  16. Echevarría-Machado I, Sánchez-Cach LA, Hernández-Zepeda C, Rivera-Madrid R, Moreno-Valenzuela OA (2005) A simple and efficient method for isolation of DNA in high mucilaginous plant tissues. Mol Biotechnol 31(2):129–135CrossRefGoogle Scholar
  17. Eickbush TH, Eickbush DG (2007) Review. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485CrossRefGoogle Scholar
  18. Foerster AM, Hetzl J, Müllner C, Scheid OM (2010) Analysis of bisulfite sequencing data from plant DNA using CyMATE. Plant Epigenet: Methods Protoc 631:13–22Google Scholar
  19. Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m6A RNA methylation. ‎Nat Rev Genet 15(5):293–306Google Scholar
  20. Garcia S, Kovařík A (2013) Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. Heredity 111(1):23–33CrossRefGoogle Scholar
  21. Garcia S, Panero JL, Siroky J, Kovarik A (2010) Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol 10(1):176CrossRefPubMedPubMedCentralGoogle Scholar
  22. Garcia S, Khaitová CL, Kovařík A (2012) Expression of 5S rRNA genes linked to 35S rDNA in plants, their epigenetic modification and regulatory element divergence. BMC Plant Biol 12(1):95CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gómez-Rodríguez VM, Rodríguez-Garay B, Palomino G, Martínez J, Barba-Gonzalez R (2013) Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae). Comp Cytogenet 7(3):191–203Google Scholar
  24. Good-Avila SV, Souza V, Gaut BS, Eguiarte LE (2006) Timing and rate of speciation in Agave (Agavaceae). Proc Natl Acad Sci USA 103(24):9124–9129CrossRefGoogle Scholar
  25. Granneman S, Baserga SJ (2005) Crosstalk in gene expression: coupling and co-regulation of rDNA transcription, pre-ribosome assembly and pre-rRNA processing. Curr Opin Cell Biol 17(3):281–286CrossRefGoogle Scholar
  26. Gruber AR, Neuböck R, Hofacker IL, Washietl S (2007) The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures. Nucleic Acids Res 35(2):W335–W338Google Scholar
  27. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids 41(41):95–98Google Scholar
  28. Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF (2007) Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 51(1):11–18Google Scholar
  29. Henderson IR, Chan SR, Cao X, Johnson L, Jacobsen SE (2010) Accurate sodium bisulfite sequencing in plants. Epigenetics 5(1):47–49CrossRefGoogle Scholar
  30. Hertweck KL (2013) Assembly and comparative analysis of transposable elements from low coverage genomic sequence data in Asparagales 1. Genome 56(9):487–494CrossRefGoogle Scholar
  31. Hetzl J, Foerster AM, Raidl G, Mittelsten-Scheid O (2007) CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J 51(3):526–536CrossRefGoogle Scholar
  32. Hill P, Burford D, Martin DM, Flavell AJ (2005) Retrotransposon populations of Vicia species with varying genome size. Mol Genet Genom 273(5):371–381CrossRefGoogle Scholar
  33. Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, Schulman AH (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci USA 105(15):5833–5838CrossRefGoogle Scholar
  34. Khaliq I, Awais-Khan M, Pearce S (2012) Ty1-Copia retrotransposons are heterogeneous, extremely high copy number and are major players in the genome organization and evolution of Agave tequilana. Genet Resour Crop Evol 59(4):575–587CrossRefGoogle Scholar
  35. Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55(11):1859–1863CrossRefGoogle Scholar
  36. Kobayashi T (2006) Strategies to maintain the stability of the ribosomal RNA gene repeats. Genes Genet Syst 81(3):155–161CrossRefGoogle Scholar
  37. Kobayashi T (2011) Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell Mol Life Sci 68(8):1395–1403CrossRefGoogle Scholar
  38. Kovarik A, Dadejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101(6):815–823CrossRefGoogle Scholar
  39. Lawrence RJ, Earley K, Pontes O, Silva M, Chen ZJ, Neves N, Viegas W, Pikaard CS (2004) A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell 13(4):599–609CrossRefGoogle Scholar
  40. Layat E, Sáez-Vásquez J, Tourmente S (2012) Regulation of Pol I-transcribed 45S rDNA and Pol III-transcribed 5S rDNA in Arabidopsis. Plant Cell Physiol 53(2):267–276CrossRefGoogle Scholar
  41. Lemon B, Tjian R (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 14(20):2551–2569CrossRefGoogle Scholar
  42. Martinez G, Castellano M, Tortosa M, Pallas V, Gomez G (2013) A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Res 42(3):1553–1562Google Scholar
  43. Mathieu O, Yukawa Y, Sugiura M, Picard G, Tourmente S (2002) 5S rRNA genes expression is not inhibited by DNA methylation in Arabidopsis. Plant J 29(3):313–323CrossRefGoogle Scholar
  44. Mathieu O, Probst AV, Paszkowski J (2005) Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. EMBO J 24(15):2783–2791CrossRefGoogle Scholar
  45. Mayer C, Schmitz KM, Li J, Grummt I, Santoro R (2006) Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 22(3):351–361CrossRefGoogle Scholar
  46. McKain MR, Wickett N, Zhang Y, Ayyampalayam S, McCombie WR, Chase MW, Pires JC, de Pamphilis CW, Leebens-Mack J (2012) Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae). Am J Bot 99(2):397–406CrossRefGoogle Scholar
  47. McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157CrossRefGoogle Scholar
  48. Mittelsten-Scheid O, Probst AV, Afsar K, Paszkowski J (2002) Two regulatory levels of transcriptional gene silencing in Arabidopsis. Proc Natl Acad Sci USA 99(21):13659–13662Google Scholar
  49. Moreno-Salazar SF, Esqueda MA, Martínez J, Palomino G (2007) Nuclear genome size and karyotipe of Agave angustifolia and A. rhodacantha from Sonora, México. Rev Fitotec Mex 30(1):13–23Google Scholar
  50. Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, Davis JM (2009) Evolution of genome size and complexity in Pinus. PLoS ONE 4(2):e4332CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nic-Can GI, López-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas VM, Rojas-Herrera R, De-la-Peña C (2013) New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. PLoS ONE 8(8):e72160CrossRefPubMedPubMedCentralGoogle Scholar
  52. Okonechnikov K, Golosova O, Fursov M (2012) The UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167CrossRefGoogle Scholar
  53. Orioli A, Pascali C, Pagano A, Teichmann M, Dieci G (2012) RNA polymerase III transcription control elements: themes and variations. Gene 493(2):185–194CrossRefGoogle Scholar
  54. Palomino G, Martínez J, Méndez I (2005) Citotipos en Agave angustifolia Haw. Determinados por citometría de flujo y análisis de sus cariotipos. Rev Int Contam Ambie 21(1):49–54Google Scholar
  55. Palomino G, Martínez J, Méndez I, Cepeda-Cornejo V, Barba-González R, Rodríguez-Garay B (2015) Nuclear genome size and cytotype analysis in Agave parviflora Torr. subsp. flexiflora Gentry (Asparagales, Asparagaceae). Caryologia 68(3):159–168CrossRefGoogle Scholar
  56. Paule MR, White RJ (2000) Transcription by RNA polymerases I and III. Nucleic Acids Res 28(6):1283–1298CrossRefGoogle Scholar
  57. Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16(10):1262–1269CrossRefGoogle Scholar
  58. Pikaard CS (2000) The epigenetics of nucleolar dominance. Trends Genet 16(11):495–500CrossRefGoogle Scholar
  59. Preuss S, Pikaard CS (2007) rRNA gene silence and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. BBA-Gene Struct Expr 1769(5):383–392Google Scholar
  60. Probst AV, Fagard M, Proux F, Mourrain P, Boutet S, Earley K, Lawrence RJ, Pikaard CS, Murfett J, Furner I, Vaucheret H, Scheid OM (2004) Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell 16(4):1021–1034CrossRefGoogle Scholar
  61. Renny-Byfield S, Chester M, Kovařík A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novák P, Chase MW, Leitch AR (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28(10):2843–2854CrossRefGoogle Scholar
  62. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform 11(1):129CrossRefGoogle Scholar
  63. Robert ML, Lim KY, Hanson L, Sanchez-Teyer F, Bennett MD, Leitch AR, Leitch IJ (2008) Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Bot J Linn Soc 158(2):215–222CrossRefGoogle Scholar
  64. Sampath P, Yang TJ (2014) Comparative analysis of Cassandra TRIMs in three Brassicaceae genomes. Plant Genet Resour 12(S1):S146–S150CrossRefGoogle Scholar
  65. Sanmiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82(1):37–44Google Scholar
  66. Secco D, Wang C, Shou H, Schultz MD, Chiarenza S, Nussaume L, Lister R (2015) Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. Elife 4:e09343CrossRefPubMedCentralGoogle Scholar
  67. Song Q, Chen ZJ (2015) Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol 24:101–109CrossRefGoogle Scholar
  68. Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2002) 5S ribosomal RNA database. Nucleic Acids Res 30(1):176–178CrossRefGoogle Scholar
  69. Szymanski M, Miroslawa B, Volker EA, Barciszewski J (2003) 5S rRNA: structure and interactions. Biochem J 371(3):641–651CrossRefGoogle Scholar
  70. Tamayo-Ordoñez M, Rodríguez-Zapata LC, Sánchez-Teyer LF (2012) Construction and characterization of a partial binary bacterial artificial chromosome (BIBAC) of Agave tequilana var. azul (2X) and its application for gene identification. Afr J Biotechnol 11(93):15950–15958Google Scholar
  71. Tamayo-Ordóñez YJ, Narvaez-Zapata JA, Sánchez-Teyer LF (2015) Comparative characterization of ribosomal DNA regions in different Agave accessions with economical importance. Plant Mol Biol Rep 33(6):2014–2029CrossRefGoogle Scholar
  72. Tamayo-Ordóñez MC, Espinosa-Barrera LA, Tamayo-Ordóñez YJ, Ayil-Gutiérrez B, Sánchez-Teyer LF (2016a) Advances and perspectives in the generation of polyploid plant species. Euphytica 209(1):1–22CrossRefGoogle Scholar
  73. Tamayo-Ordóñez MC, Rodriguez-Zapata LC, Narváez-Zapata JA, Tamayo-Ordóñez YJ, Ayil-Gutiérrez BA, Barredo-Pool F, Sánchez-Teyer LF (2016b) Morphological features of different polyploids for adaptation and molecular characterization of CC-NBS-LRR and LEA gene families in Agave L. J Plant Physiol 195:80–94CrossRefGoogle Scholar
  74. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739CrossRefGoogle Scholar
  75. Terol J, Naranjo MA, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: Characterization of three deep-coverage BAC libraries and analysis of 46 000 BAC-end sequences. BMC Genom 9:423CrossRefGoogle Scholar
  76. Tynkevich YO, Volkov RA (2014) Structural organization of 5S ribosomal DNA in Rosa rugosa. Cytol Genet 48(1):1–6CrossRefGoogle Scholar
  77. Vaillant I, Tutois S, Cuvillier C, Schubert I, Tourmente S (2007) Regulation of Arabidopsis thaliana 5S rRNA genes. Plant Cell Physiol 48(5):745–752CrossRefGoogle Scholar
  78. Vaillant I, Tutois S, Jasencakova Z, Douet J, Schubert I, Tourmente S (2008) Hypomethylation and hypermethylation of the tandem repetitive 5S rRNA genes in Arabidopsis. Plant J 54(2):299–309CrossRefGoogle Scholar
  79. Vanyushin BF (2006) DNA methylation: basic mechanisms. In: Doerfler W, Böhm P (eds) Current topics in microbiology and immunology. Springer, Berlin, pp 67–122Google Scholar
  80. Wang W, Ma L, Becher H, Garcia S, Kovarikova A, Leitch IJ, Leitch AR, Kovarik A (2016) Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 125(4):683–699CrossRefGoogle Scholar
  81. Wicke S, Costa A, Muñoz J, Quandt D (2011) Restless 5S: the re-arrangement (s) and evolution of the nuclear ribosomal DNA in land plants. Mol Phylogenet Evol 61(2):321–332CrossRefGoogle Scholar
  82. Xue S, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13(6):355–369CrossRefGoogle Scholar
  83. Yang J, Sharma S, Kötter P, Entian KD (2015) Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae. Nucleic Acids Res 43(4):2342–2352Google Scholar
  84. Zuccolo A, Sebastian A, Talag J, Yu Y, Kim H, Collura K, Kudrna D, Wing RA (2007) Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evol Biol 7(1):152CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. J. Tamayo-Ordóñez
    • 1
  • J. A. Narváez-Zapata
    • 2
  • M. C. Tamayo-Ordóñez
    • 1
  • L. F. Sánchez-Teyer
    • 1
  1. 1.Unidad de BiotecnologíaCentro de Investigación Científica de Yucatán A.C.MéridaMexico
  2. 2.Instituto Politécnico Nacional (IPN), Centro de Biotecnología Genómica (CBG-IPN)ReynosaMexico

Personalised recommendations