Advertisement

Journal of Molecular Evolution

, Volume 86, Issue 3–4, pp 172–183 | Cite as

Mineral Grains, Dimples, and Hot Volcanic Organic Streams: Dynamic Geological Backstage of Macromolecular Evolution

  • Nikolai E. Skoblikow
  • Andrei A. Zimin
Original Article

Abstract

The hypothesis of hot volcanic organic stream as the most probable and geologically plausible environment for abiogenic polycondensation is proposed. The primary synthesis of organic compounds is considered as result of an explosive volcanic (perhaps, meteorite-induced) eruption. The eruption was accompanied by a shock wave propagating in the primeval atmosphere and resulting in the formation of hot cloud of simple organic compounds—aldehydes, alcohols, amines, amino alcohols, nitriles, and amino acids—products, which are usually obtained under the artificial conditions in the spark-discharge experiments. The subsequent cooling of the organic cloud resulted in a gradual condensation and a serial precipitation of organic compounds (in order of decreasing boiling point values) into the liquid phase forming a hot, viscous and muddy organic stream (named “lithorheos”). That stream—even if the time of its existence was short—is considered here as a geologically plausible environment for abiogenic polycondensation. The substances successively prevailing in such a stream were cyanamide, acetamide, formamide, glycolonitrile, acetonitrile. An important role was played by mineral (especially, phosphate-containing) grains (named “lithosomes”), whose surface was modified with heterocyclic nitrogen compounds synthesized in the course of eruption. When such grains got into hot organic streams, their surface catalytic centers (named “lithozymes”) played a decisive role in the emergence, facilitation and maintenance of prebiotic reactions and key processes characteristic of living systems. Owing to its cascade structure, the stream was a factor underlying the formation of mineral-polymeric aggregates (named “lithocytes”) in the small natural streambed cavities (dimples)—as well as a factor of their further spread within larger geological locations which played a role of chemo-ecological niches. All three main stages of prebiotic evolution (primary organic synthesis, polycondensation, and formation of proto-cellular structures) are combined within a common dynamic geological process. We suppose macromolecular evolution had an extremely fast, “flash” start: the period from volcanic eruption to formation of lithocyte “populations” took not million years but just several tens of minutes. The scenario proposed can be verified experimentally with a three-module setup working with principles of dynamic (flow) chemistry in its core element.

Keywords

Abiogenesis Volcanism Prebiotic chemistry Flow chemistry Translation 

Notes

Acknowledgements

We are sincerely grateful to Vladimir Skoblikov for valuable collaboration and to Alexey Agafonov who provided substantial assistance in preparing the English version of this text.

References

  1. Adam ZR, Fahrenbach AC, Hongo Y, Cleaves HJ, Ruiqin Y, Yoda I, Aono M (2017) Production and concentration of water-alternative solvents on the prebiotic Earth. In 18th International Conference on the Origin of Life 2017, p 4204Google Scholar
  2. Adamala KP, Engelhart AE, Szostak JW (2016) Collaboration between primitive cell membranes and soluble catalysts. Nat Commun 7:11041.  https://doi.org/10.1038/ncomms11041 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahnert SE, Marsh JA, Hernández H, Robinson CV, Teichmann SA (2015) Principles of assembly reveal a periodic table of protein complexes. Science 350(6266):aaa2245.  https://doi.org/10.1126/science.aaa2245 CrossRefPubMedGoogle Scholar
  4. Bada JL, Chalmers JH, Cleaves JH (2016) Is formamide a geochemically plausible prebiotic solvent? Phys Chem Chem Phys 18:20085–20090CrossRefPubMedGoogle Scholar
  5. Bar-Nun A, Bar-Nun N, Bauer SH, Sagan C (1970) Shock synthesis of amino acids in simulated primitive environments. Science 168(3930):470–473CrossRefPubMedGoogle Scholar
  6. Basiuk VA, Navarro-Gonzalez R (1996) Possible role of volcanic ash–gas clouds in the Earth’s prebiotic chemistry. Orig Life Evol Biosphere 26:173–194CrossRefGoogle Scholar
  7. Benner SA (2014) Paradoxes in the origin of life. Orig Life Evol Biosph 44(4):339–343.  https://doi.org/10.1007/s11084-014-9379-0 CrossRefPubMedGoogle Scholar
  8. Benner SA, Kim HJ, Carrigan MA (2012) Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc Chem Res 45(12):2025–2034.  https://doi.org/10.1021/ar200332w CrossRefPubMedGoogle Scholar
  9. Bernal JD (1951) The physical basis of life. Routledge and Kegan Paul, LondonGoogle Scholar
  10. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535CrossRefPubMedGoogle Scholar
  11. Callahan MP, Smith KE, Cleaves HJ 2nd, Ruzicka J, Stern JC, Glavin DP, House CH, Dworkin JP (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci USA 108(34):13995–13998.  https://doi.org/10.1073/pnas.1106493108 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cavalier-Smith T (2001) Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis. J Mol Evol 53(4–5):555–595CrossRefPubMedGoogle Scholar
  13. Cleaves HJ 2nd, Michalkova Scott A, Hill FC, Leszczynski J, Sahai N, Hazen R (2012) Mineral-organic interfacial processes: potential roles in the origins of life. Chem Soc Rev 41(16):5502–5525.  https://doi.org/10.1039/c2cs35112a CrossRefPubMedGoogle Scholar
  14. Commeyras A, Collet H, Boiteau L, Taillades J, Vandenabeele-Trambouze O, Cottet H, Biron JP, Plasson R, Mion L, Lagrille O, Martin H, Selsis F, Dobrijevic M (2002) Prebiotic synthesis of sequential peptides on the Hadean beach by a molecular engine working with nitrogen oxides as energy sources. Polym Int 51(7):661–665.  https://doi.org/10.1002/pi.1027 CrossRefGoogle Scholar
  15. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955CrossRefPubMedGoogle Scholar
  16. Damer B (2016) A field trip to the Archaean in search of Darwin’s warm little pond. Life (Basel) 6(2):21  https://doi.org/10.3390/life6020021 Google Scholar
  17. Damer B, Deamer D (2015) Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life 5(1):872–887.  https://doi.org/10.3390/life5010872 CrossRefPubMedPubMedCentralGoogle Scholar
  18. de Duve C (1991) Blueprint for a cell: the nature and origin of life. Patterson, Burlington, p 275Google Scholar
  19. Ebisuzaki T, Maruyama S (2017) Nuclear geyser model of the origin of life: driving force to promote the synthesis of building blocks of life. Geosci Front 8(2):275–298CrossRefGoogle Scholar
  20. Emons H-H, Naumann R, Jahn K, Flammersheim H-J (1986) Thermal properties of acetamide in the temperature range from 298 K to 400 K. Thermochim Acta 104:127–137.  https://doi.org/10.1016/0040-6031(86)85191-7 CrossRefGoogle Scholar
  21. Ferris JP, Hill AR Jr, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381(6577):59–61CrossRefPubMedGoogle Scholar
  22. Ferus M, Pietrucci F, Saitta AM, Knížek A, Kubelík P, Ivanek O, Shestivska V, Civiš S (2017) Formation of nucleobases in a Miller-Urey reducing atmosphere. Proc Natl Acad Sci USA 114(17):4306–4311.  https://doi.org/10.1073/pnas.1700010114 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fox SW, Harada K (1961) Synthesis of uracil under conditions of a thermal model of prebiological chemistry. Science 133(3468):1923CrossRefPubMedGoogle Scholar
  24. Fox SW, Harada K, Kendrick J (1959) Production of spherules from synthetic proteinoid and hot water. Science 1 129(3357):1221–1223CrossRefPubMedGoogle Scholar
  25. Glasby GP (2006) Abiogenic origin of hydrocarbons: an historical overview. Resour Geol 56(1):85–98CrossRefGoogle Scholar
  26. Haldane JBS (1929) The origin of life. Ration Annu 148:3–10Google Scholar
  27. Hanic F, Morvová M, Morva I (2000) Thermochemical aspects of the conversion of the gaseous system CO2–N2–H2O into a solid ixture of amino acids. J Therm Anal Calorim 60:1111.  https://doi.org/10.1023/A:1010152901749 CrossRefGoogle Scholar
  28. Harada K, Fox SW (1964) Thermal synthesis of natural amino-acids from a postulated primitive terrestrial atmosphere. Nature 201:335–336CrossRefPubMedGoogle Scholar
  29. Hazen RM, Sverjensky DA (2010) Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb Perspect Biol 2(5):a002162.  https://doi.org/10.1101/cshperspect.a002162 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Higgs PG, Lehman N (2015) The RNA world: molecular cooperation at the origins of life. Nat Rev Genet 16:7–17CrossRefPubMedGoogle Scholar
  31. Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322:404.  https://doi.org/10.1126/science.1161527 CrossRefPubMedGoogle Scholar
  32. Keefe AD, Miller SL (1996) Potentially prebiotic syntheses of condensed phosphates. Orig Life Evol Biosphere 26:15–25CrossRefGoogle Scholar
  33. Khare B, Sagan C (1971) Synthesis of cystine in simulated primitive conditions. Nature 232:577–579.  https://doi.org/10.1038/232577a0 CrossRefPubMedGoogle Scholar
  34. Kuan Y-J, Charnley SB, Huang H-C, Tseng W-L, Kisiel Z (2003) Interstellar glycine. Astrophys J 593:848–867.  https://doi.org/10.1086/375637 CrossRefGoogle Scholar
  35. Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201(4350):67–69CrossRefPubMedGoogle Scholar
  36. Lathe R (2003) Fast tidal cycling and the origin of life. Icarus 168:18–22CrossRefGoogle Scholar
  37. Lavrentiev GA, Strigunkova TF, Egorov IA (1984) Abiological synthesis of amino acids, purines and pyrimidines under conditions simulating the volcanic ash-gas cloud. Orig Life Evol Biosphere 14:205–212CrossRefGoogle Scholar
  38. Li CY, Tseng JY, Morita K, MacKenzie JD (1992) ORMOSILS as matrices in inorganic-organic nanocomposites for various optical applications. In Proceedings of SPIE—The International Society for Optical Engineering 1758. Sol–Gel Optics II, pp 410–419.  https://doi.org/10.1117/12.132033
  39. Ligterink NFW, Coutens A, Kofman V, Muller HSP, Garrod RT, Calcutt H, Wampfler SF, Jorgensen JK, Linnartz H, van Dishoeck EF (2017) The ALMA-PILS survey: detection of CH3NCO towards the low-mass protostar IRAS. Mon Not R Astron Soc 469(2):2219–2229. doi. https://doi.org/10.1093/mnras/stx890 CrossRefGoogle Scholar
  40. Markhinin EK, Podkletnov NE (1977) The phenomenon of formation of prebiological compounds in volcanic processes. Orig Life 3:225–235CrossRefGoogle Scholar
  41. Matthews CN (2000) The HCN world: establishing protein-nucleic acid life. Orig Life Evol Biosph 30:292–293Google Scholar
  42. McManus JJ, Charbonneau P, Zaccarelli E, Neer Asherie N (2016) The physics of protein self-assembly. Curr Opin Colloid Interface Sci 22:73–79. doi. https://doi.org/10.1016/j.cocis.2016.02.011 CrossRefGoogle Scholar
  43. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529CrossRefPubMedGoogle Scholar
  44. Monnard P-A, Apel CL, Kanavarioti A, Deamer DW (2002) Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2:139–152CrossRefPubMedGoogle Scholar
  45. Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV (2012) Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA 109:E821–E830CrossRefGoogle Scholar
  46. Norris V, Reusch RN, Igarashi K, Root-Bernstein R (2014) Molecular complementarity between simple, universal molecules and ions limited phenotype space in the precursors of cells. Biol Direct 9:28Google Scholar
  47. Nutman AP, Bennett VC, Friend CR, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3700-million-year-old microbial structures. Nature 537:535–538CrossRefPubMedGoogle Scholar
  48. Okazaki M, Yoshida Y, Yamaguchi S, Kaneno M, Elliott JC (2001) Affinity binding phenomena of DNA onto apatite crystals. Biomaterials 22:2459–2464CrossRefPubMedGoogle Scholar
  49. Paecht-Horowitz M (1974) The possible role of clays in prebiotic peptide synthesis. Orig Life 5(1):173–187CrossRefPubMedGoogle Scholar
  50. Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey A, Lazcano A, Bada JL (2011) Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci USA 108(14):5526–5531CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pascal R, Boiteau L, Forterre P, Gargaud M, Lazcano A, Lopez-Garcia P, Moreira D, Maurel M-C, Pereto J, Prieur D, Reisse J (2006) Prebiotic chemistry–biochemistry–emergence of life (4.4–2 Ga). Earth Moon Planets 98:153–203CrossRefGoogle Scholar
  52. Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD (2015) Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem 7(4):301–307.  https://doi.org/10.1038/nchem.2202 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Peretó J, López-García P, Moreira D (2004) Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci 29:469–477CrossRefPubMedGoogle Scholar
  54. Pizzarello S, Huang Y, Becker L, Poreda RJ, Neeman RA, Cooper G, Williams M (2001) The organic content of the Tagish Lake meteorite. Science 293:2236CrossRefPubMedGoogle Scholar
  55. Ponnamperuma C (1965) Peptide synthesis from amino acids in aqueous solution irradiated with ultraviolet. Science 147:1572–1574CrossRefPubMedGoogle Scholar
  56. Proskurowski G, Lilley MD, Seewald JS, Früh-Green GL, Olson EJ, Lupton JE, Sylva SP, Kelley DS (2008) Abiogenic hydrocarbon production at lost city hydrothermal field. Science 319:604–607CrossRefPubMedGoogle Scholar
  57. Rauchfuss H (2008) Chemical evolution and the origin of life. Springer-Verlag, Berlin Heidelberg, p 339Google Scholar
  58. Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786CrossRefPubMedGoogle Scholar
  59. Rodriguez-Garcia M, Surman A, Cooper GJT, Suárez-Marina I, Hosni Z, Lee MP, Cronin L (2015) Formation of oligopeptides in high yield under simple programmable conditions. Nat Commun 2015 6:8385.  https://doi.org/10.1038/ncomms9385 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ross DS, Deamer D (2016) Dry/wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis. Life 6(3):28  https://doi.org/10.3390/life6030028 CrossRefPubMedCentralGoogle Scholar
  61. Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E (2006) About a formamide-based origin of informational polymers: syntheses of nucleobases and favourable thermodynamic niches for early polymers. Orig Life Evol Biosph. 36(5–6):523–531CrossRefPubMedGoogle Scholar
  62. Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E (2012) Genetics first or metabolism first? The formamide clue. Chem Soc Rev 41(16):5526–5565.  https://doi.org/10.1039/c2cs35066a CrossRefPubMedGoogle Scholar
  63. Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73CrossRefPubMedGoogle Scholar
  64. Schwartz AW, Joosten H, Voet AB (1982) Prebiotic adenine synthesis via HCN oligomerization in ice. Biosystems 15(3):191–193CrossRefPubMedGoogle Scholar
  65. Schwartz AW, Voet AB, Van der Veen M (1984) Recent progress in the prebiotic chemistry of HCN. Orig Life Evol Biosphere 14:91–98CrossRefGoogle Scholar
  66. Segré D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci USA 97(8):4112–4117CrossRefPubMedPubMedCentralGoogle Scholar
  67. Shapiro R (1987) Origins: a skeptic’s guide to the creation of life on earth. Bantam Books, New York p 110. ISBN: 0-671-45939-2Google Scholar
  68. Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (1999) Encyclopedia of Volcanoes. Academic Press, Cambridge p 1417 ISBN: 9780080547985Google Scholar
  69. Skoblikow NE, Zimin АА (2015) A search for relict ribonucleotide and amino acid sequences that played a key role in the development of the ribosome and modern protein diversity. Math Biol Bioinform 10(1):116–130.  https://doi.org/10.17537/2015.10.116 CrossRefGoogle Scholar
  70. Skoblikow NE, Zimin АА (2016) Hypothesis of lithocoding: origin of the genetic code as a “Double jigsaw puzzle” of nucleobase-containing molecules and amino acids assembled by sequential filling of apatite mineral cellules. J Mol Evol 82(4):163–172.  https://doi.org/10.1007/s00239-016-9736-x CrossRefPubMedGoogle Scholar
  71. Smith JV, Arnold FP Jr, Parsons I, Lee MR (1999) Biochemical evolution III: polymerization on organophilic silica-rich surfaces, crystal-chemical modeling, formation of first cells, and geological clues. Proc Natl Acad Sci 96(7):3479–3485CrossRefPubMedPubMedCentralGoogle Scholar
  72. Snyder LE, Buhl D, Zuckerman B, Palmer P (1969) Microwave detection of interstellar formaldehyde. Phys Rev Lett 61(2):77–115.  https://doi.org/10.1103/PhysRevLett.22.679 Google Scholar
  73. Spinler K, Tian A, Christian DA, Pantano DA, Baumgart T, Discher DE (2013) Dynamic domains in polymersomes: mixtures of polyanionic and neutral diblocks respond more rapidly to changes in calcium than to pH. Langmuir 29(24):7499–7508.  https://doi.org/10.1021/la304602e CrossRefPubMedPubMedCentralGoogle Scholar
  74. Steinman G, Lemmon RM, Calvin M (1965) Dicyandiamide: possible role in peptide synthesis during chemical evolution. Science 147(3665):1574–1575CrossRefPubMedGoogle Scholar
  75. Stoks PG, Schwartz AW (1982) Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim Cosmochim Acta 46:309–315CrossRefGoogle Scholar
  76. Sutherland JD (2016) The origin of life—out of the blue. Angew Chem Int Ed Engl 55(1):104–121.  https://doi.org/10.1002/anie.201506585 CrossRefPubMedGoogle Scholar
  77. Trail D, Watson EB, Tailby ND (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480(7375):79–82.  https://doi.org/10.1038/nature10655 CrossRefPubMedGoogle Scholar
  78. Villar G, Wilber AW, Williamson AJ, Thiara P, Doye JP, Louis AA, Jochum MN, Lewis AC, Levy ED (2009) Self-assembly and evolution of homomeric protein complexes. Phys Rev Lett 102(11):118106CrossRefPubMedGoogle Scholar
  79. Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B Biol Sci 361(1474):1787–1806CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wegner J, Ceylan S, Kirschning A (2011) Ten key issues in modern flow chemistry. Chem Commun 28;47(16):4583–4592.  https://doi.org/10.1039/c0cc05060a CrossRefGoogle Scholar
  81. Wing MR, Bada JL (1991) Geochromatography on the parent body of the carbonaceous chondrite Ivuna. Geochim Cosmochim Acta 55:2937–2942.  https://doi.org/10.1016/0016-7037(91)90458-H CrossRefGoogle Scholar
  82. Yousefi S, Simon H-U (2016) NETosis—does it really represent nature’s “Suicide Bomber”? Front Immunol 7:328.  https://doi.org/10.3389/fimmu.2016.00328 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zimmerman SB, Trach SO (1988) Effects of macromolecular crowding on the association of E. coli ribosomal particles. Nucleic Acids Res 25(14A):6309–6326CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of MicrobiologyKrasnodar Research Center of Zootechny and VeterinaryKrasnodarRussia
  2. 2.Medical Laboratory “CL”KrasnodarRussia
  3. 3.Laboratory of Molecular MicrobiologyInstitute of Biochemistry and Physiology of MicroorganismsPushchinoRussia

Personalised recommendations