Journal of Molecular Evolution

, Volume 86, Issue 2, pp 138–149 | Cite as

Divergent Selection of Pattern Recognition Receptors in Mammals with Different Ecological Characteristics

Original Article


Pattern recognition receptors (PRRs) are specialized receptors that represent a key component of the host innate immune system. Whether molecular evolutionary history of different PRR classes have involved different genetic mechanisms underlying diverse pathogen environment in mammals, and whether distinct ecology of mammals may have imposed divergent selective pressures on the evolution of the PRRs, remained unknown. To test these hypotheses, we investigated the characterization of 20 genes belonging to four PRR classes in mammals. Evidence of positive selection was found in most (17 of 20) PRR genes examined, and most positively selected sites (84%) undergoing radical changes were found to fall in important functional regions, consistent with the co-evolutionary dynamics between the hosts and their microbial counterparts. We found different evolutionary patterns in different PRR classes, with the highest level of positive selection in C-type lectin receptor (CLR) family, suggesting that the capability of CLRs in response to a wide variety of ligands might explain their malleability to selection pressures. Tests using branch models that partitioned the data along habitat and social behavior found significant evidence of divergent selective pressures of PRRs among mammalian groups. Interestingly, species-specific evolution was detected on RIG-I-like helicase genes (RLRs) in cetaceans, suggesting that RLRs might play a critical role in the defense against widespread marine RNA viruses during their divergence and radiation into marine habitats. This study provides a comprehensive look at the evolutionary patterns and implications of mammalian PRRs, and highlights the importance of ecological influences in molecular adaptation.


Innate immunity Pattern recognition receptors (PPRs) Host–pathogen interaction Adaptive evolution Positive selection 



We thank Mr. Xinrong Xu for help with collecting samples for many years. We also thank members of the Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, for their contributions to this paper.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict interests.

Supplementary material

239_2018_9832_MOESM1_ESM.pdf (4.7 mb)
Supplementary material 1 (PDF 4829 KB)
239_2018_9832_MOESM2_ESM.pdf (587 kb)
Supplementary material 2 (PDF 587 KB)


  1. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 1244:783–801CrossRefGoogle Scholar
  2. Alcaide M, Edwards SV (2011) Molecular evolution of the Toll-like receptor multigene 1 family in birds. Mol Biol Evol 28:1703–1715CrossRefPubMedGoogle Scholar
  3. Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Syst 5:325–383CrossRefGoogle Scholar
  4. Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in Toll-like receptor TLR genes in mammals. BMC Evol Boil 111:368CrossRefGoogle Scholar
  5. Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Kidd JR (2009) Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. Plos Genet 57:e1000562CrossRefGoogle Scholar
  6. Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 2410:528–533CrossRefGoogle Scholar
  7. Brook CE, Dobson AP (2015) Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends Microbiol 233:172–180CrossRefGoogle Scholar
  8. Creagh EM, O’Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 278:352–357CrossRefGoogle Scholar
  9. de Matos AL, McFadden G, Esteves PJ (2013) Positive evolutionary selection on the RIG-I-like receptor genes in mammals. PLoS ONE 8:e81864CrossRefGoogle Scholar
  10. Doronina L, Churakov G, Kuritzin A, Shi J, Baertsch R, Clawson H, Schmitz J (2017) Speciation network in Laurasiatheria: retrophylogenomic signals. Genome Res 276:997–1003CrossRefGoogle Scholar
  11. Escalera-Zamudio M, Zepeda-Mendoza ML, Loza-Rubio E, Rojas-Anaya E, Méndez-Ojeda ML, Arias CF, Greenwood AD (2015) The evolution of bat nucleic acid-sensing toll-like receptors. Mol Ecol 2423:5899–5909CrossRefGoogle Scholar
  12. Fornůsková A, Vinkler M, Pagès M, Galan M, Jousselin E, Cerqueira F, Morand S, Charbonnel N, Bryja J, Cosson JF (2013) Contrasted evolutionary histories of two toll-like receptors (Tlr4 and Tlr7) in wild rodents (MURINAE). BMC Evol Biol 13:194CrossRefPubMedPubMedCentralGoogle Scholar
  13. Geijtenbeek TBH, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 97:465–479CrossRefGoogle Scholar
  14. Graham LM, Brown GD (2009) The dectin-2 family of C-type lectins in immunity and homeostasis. Cytokine 481:148–155CrossRefGoogle Scholar
  15. Grueber CE, Wallis GP, Jamieson IG (2014) Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes. PLoS ONE 93:e89632CrossRefGoogle Scholar
  16. Ishengoma E, Agaba M (2017) Evolution of toll-like receptors in the context of terrestrial ungulates and cetaceans diversification. BMC Evol Biol 171:54CrossRefGoogle Scholar
  17. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 3275963:291–295CrossRefGoogle Scholar
  18. Jann OC, Werling D, Chang JS, Haig D, Glass EJ (2008) Molecular evolution of bovine toll-like receptor 2 suggests substitutions of functional relevance. BMC Evol Biol 8:288CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE (2016) The critical role of toll-like receptors-from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev 151:1–8CrossRefGoogle Scholar
  20. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 231:19–28CrossRefGoogle Scholar
  22. Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Martinez ND (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lang AS, Rise ML, Culley AI, Steward GF (2009) RNA viruses in the sea FEMS. Microbiol Rev 332:295–323Google Scholar
  24. Lewis SH, Obbard DJ (2014) Recent insights into the evolution of innate viral sensing in animals. Curr Opin Microbiol 20:170–175CrossRefPubMedPubMedCentralGoogle Scholar
  25. Luis AD, Hayman DT, O’Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, Mills JN, Timonin ME, Willis CK, Cunningham AA, Fooks AR, Charles E, Rupprecht CE, Wood JL, Webb CT (2013) A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc B 280:20122753CrossRefPubMedPubMedCentralGoogle Scholar
  26. Luis AD, O’Shea TJ, Hayman DT, Wood JL, Cunningham AA, Gilbert AT, Mills JN, Webb CT (2015) Network analysis of host-virus communities in bats and rodents reveals determinants of cross-species transmission. Ecol Lett 1811:1153–1162CrossRefGoogle Scholar
  27. McCallum H, Harvell D, Dobson A (2003) Rates of spread of marine pathogens. Ecol Lett 612:1062–1067CrossRefGoogle Scholar
  28. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 12:135–145CrossRefGoogle Scholar
  29. Mucha R, Bhide MR, Chakurkar EB, Novak M, Mikula I (2009) Toll-like receptors TLR1, TLR2 and TLR4 gene mutations and natural resistance to Mycobacterium avium subsp. paratuberculosis infection in cattle. Vet Immunol Immunop 1284:381–388CrossRefGoogle Scholar
  30. Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A (2008) Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics 60:727–735CrossRefPubMedGoogle Scholar
  31. Pond SLK, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533CrossRefPubMedGoogle Scholar
  32. Quéméré E, Galan M, Cosson JF, Klein F, Aulagnier S, Gilot-Fromont E, Joël Merlet J, Bonhomme M, Hewison AJM, Charbonnel N (2015) Immunogenetic heterogeneity in a widespread ungulate: the European roe deer (Capreolus capreolus). Mol Ecol 2415:3873–3887CrossRefGoogle Scholar
  33. Ranwez V, Delsuc F, Ranwez S, Belkhir K, Tilak MK, Douzery EJ (2007) OrthoMaM: a database of orthologous genomic markers for placental mammal phylogenetics. BMC Evol Biol 7:241CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schad J, Voigt CC (2016) Adaptive evolution of virus-sensing toll-like receptor 8 in bats. Immunogenetics 6810:783–795CrossRefGoogle Scholar
  35. Shen T, Xu S, Wang X, Yu W, Zhou K, Yang G (2012) Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans. BMC Evol Boil 121:39CrossRefGoogle Scholar
  36. Sironi M, Cagliani R, Forni D, Clerici M (2015) Evolutionary insights into host-pathogen interactions from mammalian sequence data. Nat Rev Gene 164:224–236CrossRefGoogle Scholar
  37. Slade RW, McCallum HI (1992) Overdominant vs. frequency-dependent selection at MHC loci. Genetics 132:861–862PubMedPubMedCentralGoogle Scholar
  38. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Nat Acad Sci 10016:9440–9445CrossRefGoogle Scholar
  39. Swanson WJ, Nielsen R, Yang Q (2003) Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 20:18–20CrossRefPubMedGoogle Scholar
  40. Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Suzanne M, Louis S, Sosathya S, Jason G, Lena A, Richard FA, Bruce B (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 10110:3516–3521CrossRefGoogle Scholar
  41. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 1406:805–820CrossRefGoogle Scholar
  42. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 1691:10–14CrossRefGoogle Scholar
  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tschirren B, Råberg L, Westerdahl H (2011) Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents. J Evol Biol 246:1232–1240CrossRefGoogle Scholar
  45. Voogdt CG, Bouwman LI, Kik MJ, Wagenaar JA, Van Putten JP (2016) Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition. Sci Rep 6 19046CrossRefPubMedPubMedCentralGoogle Scholar
  46. Werdelin L (2007) The origin and evolution of mammals. Acta Zool 88:179–180CrossRefGoogle Scholar
  47. Wlasiuk G, Nachman MW (2010) Adaptation and constraint at toll-like receptors in primates. Mol Biol Evol 27:2172–2186CrossRefPubMedPubMedCentralGoogle Scholar
  48. Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 195:671–672CrossRefGoogle Scholar
  49. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar
  50. Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118CrossRefPubMedGoogle Scholar
  51. Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ (2005) Identification and sequence analysis of chicken toll-like receptors. Immunogenetics 56:743–753CrossRefPubMedGoogle Scholar
  52. Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 2271:54–65CrossRefGoogle Scholar
  53. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479CrossRefPubMedGoogle Scholar
  55. Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X et al (2013) Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339:456–460CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ran Tian
    • 1
  • Meixiu Chen
    • 1
  • Simin Chai
    • 1
  • Xinghua Rong
    • 1
  • Bingyao Chen
    • 1
  • Wenhua Ren
    • 1
  • Shixia Xu
    • 1
  • Guang Yang
    • 1
  1. 1.Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina

Personalised recommendations