Skip to main content
Log in

The Polyphyletic Origins of Primase–Helicase Bifunctional Proteins

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We studied the evolutionary relationships of different primase–helicase bifunctional proteins, found mostly in viruses, virophages, plasmids, and organellar genomes, by phylogeny and correlation analysis. Our study suggests independent origins of primase–helicase bifunctional proteins resulting from multiple fusion events between genes encoding primase and helicase domains of different families. The correlation analysis further indicated strong functional dependencies of domains in the bifunctional proteins that are part of smaller genomes and plasmids. Bifunctional proteins found in some bacterial genomes exhibited weak coevolution probably suggesting that these are the non-functional remnants of the proteins acquired via horizontal transfer. We have put forward possible scenarios for the origin of primase–helicase bifunctional proteins in large eukaryotic DNA viruses and virophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Monem M, Hoffmann-Berling H (1976) Enzymic unwinding of DNA. 1. Purification and characterization of a DNA-dependent ATPase from Escherichia coli. Eur J Biochem 65(2):431–440

    Article  CAS  PubMed  Google Scholar 

  • Aherfi S, Colson P, La Scola B, Raoult D (2016) Giant viruses of amoebas: an update. Front Microbiol 7:349

    Article  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai K-l, Kornberg A (1981) Unique primed start of phage phi X174 DNA replication and mobility of the primosome in a direction opposite chain synthesis. Proc Natl Acad Sci 78(1):69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravind L, Leipe DD, Koonin EV (1998) Toprim: a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 26(18):4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold HP, She Q, Phan H, Stedman K, Prangishvili D, Holz I, Kristjansson JK, Garrett R, Zillig W (1999) The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol Microbiol 34(2):217–226

    Article  CAS  PubMed  Google Scholar 

  • Augustin MA, Huber R, Kaiser JT (2001) Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat Struct Mol Biol 8(1):57–61

    Article  CAS  Google Scholar 

  • Bairoch A (1991) PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res 19:2241–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekliz M, Verneau J, Benamar S, Raoult D, La Scola B, Colson P (2015) A New Zamilon-like virophage partial genome assembled from a bioreactor metagenome. Front Microbiol 6:1308

    Article  PubMed  PubMed Central  Google Scholar 

  • Bekliz M, Colson P, La Scola B (2016) The expanding family of virophages. Viruses 8(11):317

    Article  PubMed Central  Google Scholar 

  • Burns DM, Horn V, Paluh J, Yanofsky C (1990) Evolution of the tryptophan synthetase of fungi. Analysis of experimentally fused Escherichia coli tryptophan synthetase alpha and beta chains. J Biol Chem 265(4):2060–2069

    CAS  PubMed  Google Scholar 

  • Chatterjee A, Ali F, Bange D, Kondabagil K (2016a) Complete genome sequence of a new megavirus family member isolated from an inland water lake for the first time in India. Genome Announc 4:e00402–e00416

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee A, Ali F, Bange D, Kondabagil K (2016b) Isolation and complete genome sequencing of Mimivirus bombay, a giant virus in sewage of Mumbai, India. Genomics Data 9:1–3

    Article  PubMed  PubMed Central  Google Scholar 

  • Colson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, Cheng XW, Federici BA, Van Etten JL, Koonin EV, La Scola B, Raoult D (2013) “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol 158:2517

    Article  PubMed  PubMed Central  Google Scholar 

  • De Silva FS, Lewis W, Berglund P, Koonin EV, Moss B (2007) Poxvirus DNA primase. Proc Natl Acad Sci 104(47):18724–18729

    Article  PubMed  PubMed Central  Google Scholar 

  • Desnues C, La Scola B, Yutin N, Fournous G, Robert C, Azza S, Jardot P, Monteil S, Campocasso A, Koonin EV (2012) Provirophages and transpovirons as the diverse mobilome of giant viruses. Proc Natl Acad Sci 109(44):18078–18083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diray-Arce J, Liu B, Cupp JD, Hunt T, Nielsen BL (2013) The Arabidopsis At1g30680 gene encodes a homologue to the phage T7 gp4 protein that has both DNA primase and DNA helicase activities. BMC Plant Biol 13:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efron B (1979) Computers and the theory of statistics: thinking the unthinkable. SIAM Rev 21(4):460–480

    Article  Google Scholar 

  • Evans E, Klemperer N, Ghosh R, Traktman P (1995) The vaccinia virus D5 protein, which is required for DNA replication, is a nucleic acid-independent nucleoside triphosphatase. J Virol 69(9):5353–5361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filée J, Siguier P, Chandler M (2007) I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet 23(1):10–15

    Article  PubMed  Google Scholar 

  • Fischer MG, Hackl T (2016) Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 540(7632):288–291

    Article  CAS  PubMed  Google Scholar 

  • Fischer MG, Suttle CA (2011) A virophage at the origin of large DNA transposons. Science 332(6026):231–234

    Article  CAS  PubMed  Google Scholar 

  • García-Gómez S, Reyes A, Martínez-Jiménez MI, Chocrón ES, Mourón S, Terrados G, Powell C, Salido E, Méndez J, Holt IJ (2013) PrimPol, an archaic primase/polymerase operating in human cells. Mol Cell 52(4):541–553

    Article  PubMed  PubMed Central  Google Scholar 

  • Goh C-S, Bogan AA, Joachimiak M, Walther D, Cohen FE (2000) Co-evolution of proteins with their interaction partners. J Mol Biol 299(2):283–293

    Article  CAS  PubMed  Google Scholar 

  • Gong C, Zhang W, Zhou X, Wang H, Sun G, Xiao J, Pan Y, Yan S, Wang Y (2016) Novel virophages discovered in a freshwater lake in China. Front Microbiol 7:5

    PubMed  PubMed Central  Google Scholar 

  • Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3(3):419–429

    Article  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283(5407):1476–1481

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Tabor S, Richardson CC (1999) The linker region between the helicase and primase domains of the bacteriophage T7 gene 4 protein is critical for hexamer formation. J Biol Chem 274(42):30303–30309

    Article  CAS  PubMed  Google Scholar 

  • Hall MC, Matson SW (1999) Helicase motifs: the engine that powers DNA unwinding. Mol Microbiol 34(5):867–877

    Article  CAS  PubMed  Google Scholar 

  • Ilyina TV, Gorbalenya AE, Koonin EV (1992) Organization and evolution of bacterial and bacteriophage primase–helicase systems. J Mol Evol 34(4):351–357

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA + ATPases. J Struct Biol 146(1–2):11–31

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Koonin EV, Leipe DD, Aravind L (2005) Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Res 33(12):3875–3896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer LM, Balaji S, Koonin EV, Aravind L (2006) Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117(1):156–184

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Abhiman S, Aravind L (2008) A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases. Biol Direct 3:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Jozwiakowski SK, Gholami FB, Doherty AJ (2015) Archaeal replicative primases can perform translesion DNA synthesis. Proc Natl Acad Sci 112:E633–E638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S-i, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Yoshizawa T, Nakamura Y, Robb FT, Horikoshi K, Masuchi Y, Shizuya H, Kikuchi H (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5(2):55–76

    Article  CAS  PubMed  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, Baba S-i, Ankai A, Fukui S, Nagai Y, Nishijima K, Nakazawa H, Takamiya M, Masuda S, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki KI, Kubota K, Nakamura Y, Nomura N, Sako Y, Kikuchi H (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6:83–101

    Article  CAS  PubMed  Google Scholar 

  • Khan SA (1997) Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev 61(4):442–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient virus world and evolution of cells. Biol Direct 1:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Krupovic M, Koonin EV (2016) Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems. Curr Opin Microbiol 31:25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E, Raoult D (2008) The virophage as a unique parasite of the giant mimivirus. Nature 455(7209):100–104

    Article  PubMed  Google Scholar 

  • Le Breton M, Henneke G, Norais C, Flament D, Myllykallio H, Querellou J, Raffin J-P (2007) The heterodimeric primase from the euryarchaeon Pyrococcus abyssi: a multifunctional enzyme for initiation and repair? J Mol Biol 374:1172

    Article  PubMed  Google Scholar 

  • Lee S-J, Richardson CC (2002) Interaction of adjacent primase domains within the hexameric gene 4 helicase–primase of bacteriophage T7. Proc Natl Acad Sci 99(20):12703–12708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-J, Richardson CC (2004) The linker region between the helicase and primase domains of the gene 4 protein of bacteriophage T7 Role in helicase conformation and activity. J Biol Chem 279(22):23384–23393

    Article  CAS  PubMed  Google Scholar 

  • Legendre M, Audic S, Poirot O, Hingamp P, Seltzer V, Byrne D, Lartigue A, Lescot M, Bernadac A, Poulain J (2010) mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res 20(5):664–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre M, Lartigue A, Bertaux L, Jeudy S, Bartoli J, Lescot M, Alempic J-M, Ramus C, Bruley C, Labadie K (2015) In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proc Natl Acad Sci 112(38):E5327–E5335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipps G, Röther S, Hart C, Krauss G (2003) A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity. EMBO J 22(10):2516–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipps G, Weinzierl AO, von Scheven G, Buchen C, Cramer P (2004) Structure of a bifunctional DNA primase–polymerase. Nat Struct Mol Biol 11(2):157–162

    Article  CAS  PubMed  Google Scholar 

  • Long M (2000) A new function evolved from gene fusion. Genome Res 10(11):1655–1657

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  CAS  PubMed  Google Scholar 

  • McGeoch AT, Bell SD (2005) Eukaryotic/archaeal primase and MCM proteins encoded in a bacteriophage genome. Cell 120(2):167–168

    Article  CAS  PubMed  Google Scholar 

  • Oh S, Yoo D, Liu W-T (2016) Metagenomics reveals a novel virophage population in a Tibetan mountain lake. Microb Environ 31(2):173–177

    Article  Google Scholar 

  • Patel G, Johnson DS, Sun B, Pandey M, Yu X, Egelman EH, Wang MD, Patel SS (2011) A257T linker region mutant of T7 helicase–primase protein is defective in DNA loading and rescued by T7 DNA polymerase. J Biol Chem 286(23):20490–20499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X, Holz I, Zillig W, Garrett RA, She Q (2000) Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus. J Mol Biol 303(4):449–454

    Article  CAS  PubMed  Google Scholar 

  • Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C (2013) Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341(6143):281–286

    Article  CAS  PubMed  Google Scholar 

  • Pitcher RS, Brissett NC, Picher AJ, Andrade P, Juarez R, Thompson D, Fox GC, Blanco L, Doherty AJ (2007) Structure and function of a mycobacterial NHEJ DNA repair polymerase. J Mol Biol 366(2):391–405

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3):e9490

    Article  PubMed  PubMed Central  Google Scholar 

  • Raoult D, Boyer M (2010) Amoebae as genitors and reservoirs of giant viruses. Intervirology 53(5):321–329

    Article  PubMed  Google Scholar 

  • Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie J-M (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306(5700):1344–1350

    Article  CAS  PubMed  Google Scholar 

  • Rowen L, Kornberg A (1978) Primase, the dnaG protein of Escherichia coli. An enzyme which starts DNA chains. J Biol Chem 253(3):758–764

    CAS  PubMed  Google Scholar 

  • Rudd SG, Glover L, Jozwiakowski SK, Horn D, Doherty AJ (2013) PPL2 translesion polymerase is essential for the completion of chromosomal DNA replication in the African Trypanosome. Mol Cell 52(4):554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Berrondo J, Mesa P, Ibarra A, Martínez-Jiménez MI, Blanco L, Méndez J, Boskovic J, Montoya G (2012) Molecular architecture of a multifunctional MCM complex. Nucleic Acids Res 40(3):1366–1380

    Article  CAS  PubMed  Google Scholar 

  • Shutt TE, Gray MW (2006a) Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet 22(2):90–95

    Article  CAS  PubMed  Google Scholar 

  • Shutt TE, Gray MW (2006b) Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J Mol Evol 62(5):588–599

    Article  CAS  PubMed  Google Scholar 

  • Simonetti FL, Teppa E, Chernomoretz A, Nielsen M, Buslje CM (2013) MISTIC: mutual information server to infer coevolution. Nucleic Acids Res 41:W8-W14

    Article  PubMed Central  Google Scholar 

  • Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50

    Article  CAS  PubMed  Google Scholar 

  • Soultanas P (2005) The bacterial helicase-primase interaction: a common structural/functional module. Structure 13(6):839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spelbrink JN, Li F-Y, Tiranti V, Nikali K, Yuan Q-P, Tariq M, Wanrooij S, Garrido N, Comi G, Morandi L (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28(3):223–231

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan L, Lou J, Xia Y, Su B, Liu T, Cui J, Sun Y, Lou H, Huang J (2013) hPrimpol1/CCDC111 is a human DNA primase–polymerase required for the maintenance of genome integrity. EMBO rep 14(12):1104–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickner S, Wright M, Hurwitz J (1973) Studies on in vitro DNA synthesis purification of the DNA G gene product from Escherichia coli. Proc Natl Acad Sci 70(5):1613–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesemüller B, Rothe H (2006) Interpretation of bootstrap values in phylogenetic analysis. Anthropol Anz 64(2):161–165

    PubMed  Google Scholar 

  • Wright M, Wickner S, Hurwitz J (1973) Studies on in vitro DNA synthesis isolation of DNA B gene product from Escherichia coli. Proc Natl Acad Sci 70(11):3120–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanai I, Wolf YI, Koonin EV (2002) Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol 3(5):research0024.1–research0024.13

    Article  Google Scholar 

  • Yau S, Lauro FM, DeMaere MZ, Brown MV, Thomas T, Raftery MJ, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Gibson JA (2011) Virophage control of antarctic algal host–virus dynamics. Proc Natl Acad Sci 108(15):6163–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoosuf N, Yutin N, Colson P, Shabalina SA, Pagnier I, Robert C, Azza S, Klose T, Wong J, Rossmann MG (2012) Related giant viruses in distant locations and different habitats: Acanthamoeba polyphaga moumouvirus represents a third lineage of the Mimiviridae that is close to the Megavirus lineage. Genome Biol Evol 4(12):1324–1330

    Article  PubMed  PubMed Central  Google Scholar 

  • Yutin N, Koonin EV (2013) Pandoraviruses are highly derived phycodnaviruses. Biol Direct 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Yutin N, Wolf YI, Raoult D, Koonin EV (2009) Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol J 6:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Yutin N, Raoult D, Koonin EV (2013) Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virol J 10:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaretsky JZ, Wreschner DH (2008) Protein multifunctionality: principles and mechanisms. Transl Oncogenom 3:99–136

    CAS  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan: an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17(9):847–848

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yun J, Shang Z, Zhang X, Pan B (2009) Design and optimization of a linker for fusion protein construction. Prog Nat Sci 19(10):1197–1200

    Article  CAS  Google Scholar 

  • Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Zhang W, Yan S, Xiao J, Zhang Y, Li B, Pan Y, Wang Y (2013) Diversity of virophages in metagenomic datasets. J Virol 87(8):4225–4236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Sun D, Childers A, McDermott TR, Wang Y, Liles MR (2015) Three novel virophage genomes discovered from Yellowstone Lake metagenomes. J Virol 89(2):1278–1285

    Article  PubMed  Google Scholar 

  • Ziegelin G, Scherzinger E, Lurz R, Lanka E (1993) Phage P4 alpha protein is multifunctional with origin recognition, helicase and primase activities. EMBO J 12(9):3703–3708

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Anirvan Chatterjee for helpful suggestions on the manuscript. This work was supported by grants from the Department of Science and Technology, Government of India (SR/SO/BB-0031/2012) and the Department of Biotechnology, Government of India (BT/PR4808/BRB/10/1029/2012) to KK. AG acknowledges Senior Research Fellowship from the Department of Biotechnology and SP acknowledges Senior Research Fellowship from the Indian Institute of Technology Bombay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Kondabagil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Patil, S., Vijayakumar, R. et al. The Polyphyletic Origins of Primase–Helicase Bifunctional Proteins. J Mol Evol 85, 188–204 (2017). https://doi.org/10.1007/s00239-017-9816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-017-9816-6

Keywords

Navigation