Journal of Molecular Evolution

, Volume 85, Issue 5–6, pp 188–204 | Cite as

The Polyphyletic Origins of Primase–Helicase Bifunctional Proteins

  • Ankita Gupta
  • Supriya Patil
  • Ramya Vijayakumar
  • Kiran Kondabagil
Original Article
  • 116 Downloads

Abstract

We studied the evolutionary relationships of different primase–helicase bifunctional proteins, found mostly in viruses, virophages, plasmids, and organellar genomes, by phylogeny and correlation analysis. Our study suggests independent origins of primase–helicase bifunctional proteins resulting from multiple fusion events between genes encoding primase and helicase domains of different families. The correlation analysis further indicated strong functional dependencies of domains in the bifunctional proteins that are part of smaller genomes and plasmids. Bifunctional proteins found in some bacterial genomes exhibited weak coevolution probably suggesting that these are the non-functional remnants of the proteins acquired via horizontal transfer. We have put forward possible scenarios for the origin of primase–helicase bifunctional proteins in large eukaryotic DNA viruses and virophages.

Keywords

Nucleocytoplasmic large DNA virus Polyphyletic Primase–helicase Virophage Fusion 

Notes

Acknowledgements

We thank Anirvan Chatterjee for helpful suggestions on the manuscript. This work was supported by grants from the Department of Science and Technology, Government of India (SR/SO/BB-0031/2012) and the Department of Biotechnology, Government of India (BT/PR4808/BRB/10/1029/2012) to KK. AG acknowledges Senior Research Fellowship from the Department of Biotechnology and SP acknowledges Senior Research Fellowship from the Indian Institute of Technology Bombay.

References

  1. Abdel-Monem M, Hoffmann-Berling H (1976) Enzymic unwinding of DNA. 1. Purification and characterization of a DNA-dependent ATPase from Escherichia coli. Eur J Biochem 65(2):431–440CrossRefPubMedGoogle Scholar
  2. Aherfi S, Colson P, La Scola B, Raoult D (2016) Giant viruses of amoebas: an update. Front Microbiol 7:349CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arai K-l, Kornberg A (1981) Unique primed start of phage phi X174 DNA replication and mobility of the primosome in a direction opposite chain synthesis. Proc Natl Acad Sci 78(1):69–73CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aravind L, Leipe DD, Koonin EV (1998) Toprim: a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 26(18):4205CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arnold HP, She Q, Phan H, Stedman K, Prangishvili D, Holz I, Kristjansson JK, Garrett R, Zillig W (1999) The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol Microbiol 34(2):217–226CrossRefPubMedGoogle Scholar
  7. Augustin MA, Huber R, Kaiser JT (2001) Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat Struct Mol Biol 8(1):57–61CrossRefGoogle Scholar
  8. Bairoch A (1991) PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res 19:2241–2245CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bekliz M, Verneau J, Benamar S, Raoult D, La Scola B, Colson P (2015) A New Zamilon-like virophage partial genome assembled from a bioreactor metagenome. Front Microbiol 6:1308CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bekliz M, Colson P, La Scola B (2016) The expanding family of virophages. Viruses 8(11):317CrossRefPubMedCentralGoogle Scholar
  11. Burns DM, Horn V, Paluh J, Yanofsky C (1990) Evolution of the tryptophan synthetase of fungi. Analysis of experimentally fused Escherichia coli tryptophan synthetase alpha and beta chains. J Biol Chem 265(4):2060–2069PubMedGoogle Scholar
  12. Chatterjee A, Ali F, Bange D, Kondabagil K (2016a) Complete genome sequence of a new megavirus family member isolated from an inland water lake for the first time in India. Genome Announc 4:e00402–e00416CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chatterjee A, Ali F, Bange D, Kondabagil K (2016b) Isolation and complete genome sequencing of Mimivirus bombay, a giant virus in sewage of Mumbai, India. Genomics Data 9:1–3CrossRefPubMedPubMedCentralGoogle Scholar
  14. Colson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, Cheng XW, Federici BA, Van Etten JL, Koonin EV, La Scola B, Raoult D (2013) “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol 158:2517CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Silva FS, Lewis W, Berglund P, Koonin EV, Moss B (2007) Poxvirus DNA primase. Proc Natl Acad Sci 104(47):18724–18729CrossRefPubMedPubMedCentralGoogle Scholar
  16. Desnues C, La Scola B, Yutin N, Fournous G, Robert C, Azza S, Jardot P, Monteil S, Campocasso A, Koonin EV (2012) Provirophages and transpovirons as the diverse mobilome of giant viruses. Proc Natl Acad Sci 109(44):18078–18083CrossRefPubMedPubMedCentralGoogle Scholar
  17. Diray-Arce J, Liu B, Cupp JD, Hunt T, Nielsen BL (2013) The Arabidopsis At1g30680 gene encodes a homologue to the phage T7 gp4 protein that has both DNA primase and DNA helicase activities. BMC Plant Biol 13:36CrossRefPubMedPubMedCentralGoogle Scholar
  18. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  19. Efron B (1979) Computers and the theory of statistics: thinking the unthinkable. SIAM Rev 21(4):460–480CrossRefGoogle Scholar
  20. Evans E, Klemperer N, Ghosh R, Traktman P (1995) The vaccinia virus D5 protein, which is required for DNA replication, is a nucleic acid-independent nucleoside triphosphatase. J Virol 69(9):5353–5361PubMedPubMedCentralGoogle Scholar
  21. Filée J, Siguier P, Chandler M (2007) I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet 23(1):10–15CrossRefPubMedGoogle Scholar
  22. Fischer MG, Hackl T (2016) Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 540(7632):288–291CrossRefPubMedGoogle Scholar
  23. Fischer MG, Suttle CA (2011) A virophage at the origin of large DNA transposons. Science 332(6026):231–234CrossRefPubMedGoogle Scholar
  24. García-Gómez S, Reyes A, Martínez-Jiménez MI, Chocrón ES, Mourón S, Terrados G, Powell C, Salido E, Méndez J, Holt IJ (2013) PrimPol, an archaic primase/polymerase operating in human cells. Mol Cell 52(4):541–553CrossRefPubMedPubMedCentralGoogle Scholar
  25. Goh C-S, Bogan AA, Joachimiak M, Walther D, Cohen FE (2000) Co-evolution of proteins with their interaction partners. J Mol Biol 299(2):283–293CrossRefPubMedGoogle Scholar
  26. Gong C, Zhang W, Zhou X, Wang H, Sun G, Xiao J, Pan Y, Yan S, Wang Y (2016) Novel virophages discovered in a freshwater lake in China. Front Microbiol 7:5PubMedPubMedCentralGoogle Scholar
  27. Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3(3):419–429CrossRefGoogle Scholar
  28. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283(5407):1476–1481CrossRefPubMedGoogle Scholar
  29. Guo S, Tabor S, Richardson CC (1999) The linker region between the helicase and primase domains of the bacteriophage T7 gene 4 protein is critical for hexamer formation. J Biol Chem 274(42):30303–30309CrossRefPubMedGoogle Scholar
  30. Hall MC, Matson SW (1999) Helicase motifs: the engine that powers DNA unwinding. Mol Microbiol 34(5):867–877CrossRefPubMedGoogle Scholar
  31. Ilyina TV, Gorbalenya AE, Koonin EV (1992) Organization and evolution of bacterial and bacteriophage primase–helicase systems. J Mol Evol 34(4):351–357CrossRefPubMedGoogle Scholar
  32. Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA + ATPases. J Struct Biol 146(1–2):11–31CrossRefPubMedGoogle Scholar
  33. Iyer LM, Koonin EV, Leipe DD, Aravind L (2005) Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Res 33(12):3875–3896CrossRefPubMedPubMedCentralGoogle Scholar
  34. Iyer LM, Balaji S, Koonin EV, Aravind L (2006) Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117(1):156–184CrossRefPubMedGoogle Scholar
  35. Iyer LM, Abhiman S, Aravind L (2008) A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases. Biol Direct 3:39CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jozwiakowski SK, Gholami FB, Doherty AJ (2015) Archaeal replicative primases can perform translesion DNA synthesis. Proc Natl Acad Sci 112:E633–E638CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S-i, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Yoshizawa T, Nakamura Y, Robb FT, Horikoshi K, Masuchi Y, Shizuya H, Kikuchi H (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5(2):55–76CrossRefPubMedGoogle Scholar
  38. Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, Baba S-i, Ankai A, Fukui S, Nagai Y, Nishijima K, Nakazawa H, Takamiya M, Masuda S, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki KI, Kubota K, Nakamura Y, Nomura N, Sako Y, Kikuchi H (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6:83–101CrossRefPubMedGoogle Scholar
  39. Khan SA (1997) Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev 61(4):442–455PubMedPubMedCentralGoogle Scholar
  40. Koonin EV, Senkevich TG, Dolja VV (2006) The ancient virus world and evolution of cells. Biol Direct 1:29CrossRefPubMedPubMedCentralGoogle Scholar
  41. Krupovic M, Koonin EV (2016) Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems. Curr Opin Microbiol 31:25–33CrossRefPubMedPubMedCentralGoogle Scholar
  42. La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E, Raoult D (2008) The virophage as a unique parasite of the giant mimivirus. Nature 455(7209):100–104CrossRefPubMedGoogle Scholar
  43. Le Breton M, Henneke G, Norais C, Flament D, Myllykallio H, Querellou J, Raffin J-P (2007) The heterodimeric primase from the euryarchaeon Pyrococcus abyssi: a multifunctional enzyme for initiation and repair? J Mol Biol 374:1172CrossRefPubMedGoogle Scholar
  44. Lee S-J, Richardson CC (2002) Interaction of adjacent primase domains within the hexameric gene 4 helicase–primase of bacteriophage T7. Proc Natl Acad Sci 99(20):12703–12708CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lee S-J, Richardson CC (2004) The linker region between the helicase and primase domains of the gene 4 protein of bacteriophage T7 Role in helicase conformation and activity. J Biol Chem 279(22):23384–23393CrossRefPubMedGoogle Scholar
  46. Legendre M, Audic S, Poirot O, Hingamp P, Seltzer V, Byrne D, Lartigue A, Lescot M, Bernadac A, Poulain J (2010) mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res 20(5):664–674CrossRefPubMedPubMedCentralGoogle Scholar
  47. Legendre M, Lartigue A, Bertaux L, Jeudy S, Bartoli J, Lescot M, Alempic J-M, Ramus C, Bruley C, Labadie K (2015) In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proc Natl Acad Sci 112(38):E5327–E5335CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lipps G, Röther S, Hart C, Krauss G (2003) A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity. EMBO J 22(10):2516–2525CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lipps G, Weinzierl AO, von Scheven G, Buchen C, Cramer P (2004) Structure of a bifunctional DNA primase–polymerase. Nat Struct Mol Biol 11(2):157–162CrossRefPubMedGoogle Scholar
  50. Long M (2000) A new function evolved from gene fusion. Genome Res 10(11):1655–1657CrossRefPubMedGoogle Scholar
  51. Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196CrossRefPubMedGoogle Scholar
  52. McGeoch AT, Bell SD (2005) Eukaryotic/archaeal primase and MCM proteins encoded in a bacteriophage genome. Cell 120(2):167–168CrossRefPubMedGoogle Scholar
  53. Oh S, Yoo D, Liu W-T (2016) Metagenomics reveals a novel virophage population in a Tibetan mountain lake. Microb Environ 31(2):173–177CrossRefGoogle Scholar
  54. Patel G, Johnson DS, Sun B, Pandey M, Yu X, Egelman EH, Wang MD, Patel SS (2011) A257T linker region mutant of T7 helicase–primase protein is defective in DNA loading and rescued by T7 DNA polymerase. J Biol Chem 286(23):20490–20499CrossRefPubMedPubMedCentralGoogle Scholar
  55. Peng X, Holz I, Zillig W, Garrett RA, She Q (2000) Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus. J Mol Biol 303(4):449–454CrossRefPubMedGoogle Scholar
  56. Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C (2013) Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341(6143):281–286CrossRefPubMedGoogle Scholar
  57. Pitcher RS, Brissett NC, Picher AJ, Andrade P, Juarez R, Thompson D, Fox GC, Blanco L, Doherty AJ (2007) Structure and function of a mycobacterial NHEJ DNA repair polymerase. J Mol Biol 366(2):391–405CrossRefPubMedGoogle Scholar
  58. Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3):e9490CrossRefPubMedPubMedCentralGoogle Scholar
  59. Raoult D, Boyer M (2010) Amoebae as genitors and reservoirs of giant viruses. Intervirology 53(5):321–329CrossRefPubMedGoogle Scholar
  60. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie J-M (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306(5700):1344–1350CrossRefPubMedGoogle Scholar
  61. Rowen L, Kornberg A (1978) Primase, the dnaG protein of Escherichia coli. An enzyme which starts DNA chains. J Biol Chem 253(3):758–764PubMedGoogle Scholar
  62. Rudd SG, Glover L, Jozwiakowski SK, Horn D, Doherty AJ (2013) PPL2 translesion polymerase is essential for the completion of chromosomal DNA replication in the African Trypanosome. Mol Cell 52(4):554–565CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sanchez-Berrondo J, Mesa P, Ibarra A, Martínez-Jiménez MI, Blanco L, Méndez J, Boskovic J, Montoya G (2012) Molecular architecture of a multifunctional MCM complex. Nucleic Acids Res 40(3):1366–1380CrossRefPubMedGoogle Scholar
  64. Shutt TE, Gray MW (2006a) Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet 22(2):90–95CrossRefPubMedGoogle Scholar
  65. Shutt TE, Gray MW (2006b) Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J Mol Evol 62(5):588–599CrossRefPubMedGoogle Scholar
  66. Simonetti FL, Teppa E, Chernomoretz A, Nielsen M, Buslje CM (2013) MISTIC: mutual information server to infer coevolution. Nucleic Acids Res 41:W8-W14CrossRefPubMedCentralGoogle Scholar
  67. Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50CrossRefPubMedGoogle Scholar
  68. Soultanas P (2005) The bacterial helicase-primase interaction: a common structural/functional module. Structure 13(6):839–844CrossRefPubMedPubMedCentralGoogle Scholar
  69. Spelbrink JN, Li F-Y, Tiranti V, Nikali K, Yuan Q-P, Tariq M, Wanrooij S, Garrido N, Comi G, Morandi L (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28(3):223–231CrossRefPubMedGoogle Scholar
  70. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wan L, Lou J, Xia Y, Su B, Liu T, Cui J, Sun Y, Lou H, Huang J (2013) hPrimpol1/CCDC111 is a human DNA primase–polymerase required for the maintenance of genome integrity. EMBO rep 14(12):1104–1112CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wickner S, Wright M, Hurwitz J (1973) Studies on in vitro DNA synthesis purification of the DNA G gene product from Escherichia coli. Proc Natl Acad Sci 70(5):1613–1618CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wiesemüller B, Rothe H (2006) Interpretation of bootstrap values in phylogenetic analysis. Anthropol Anz 64(2):161–165PubMedGoogle Scholar
  74. Wright M, Wickner S, Hurwitz J (1973) Studies on in vitro DNA synthesis isolation of DNA B gene product from Escherichia coli. Proc Natl Acad Sci 70(11):3120–3124CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yanai I, Wolf YI, Koonin EV (2002) Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol 3(5):research0024.1–research0024.13CrossRefGoogle Scholar
  76. Yau S, Lauro FM, DeMaere MZ, Brown MV, Thomas T, Raftery MJ, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Gibson JA (2011) Virophage control of antarctic algal host–virus dynamics. Proc Natl Acad Sci 108(15):6163–6168CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yoosuf N, Yutin N, Colson P, Shabalina SA, Pagnier I, Robert C, Azza S, Klose T, Wong J, Rossmann MG (2012) Related giant viruses in distant locations and different habitats: Acanthamoeba polyphaga moumouvirus represents a third lineage of the Mimiviridae that is close to the Megavirus lineage. Genome Biol Evol 4(12):1324–1330CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yutin N, Koonin EV (2013) Pandoraviruses are highly derived phycodnaviruses. Biol Direct 8:25CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yutin N, Wolf YI, Raoult D, Koonin EV (2009) Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol J 6:223CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yutin N, Raoult D, Koonin EV (2013) Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virol J 10:158CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zaretsky JZ, Wreschner DH (2008) Protein multifunctionality: principles and mechanisms. Transl Oncogenom 3:99–136Google Scholar
  82. Zdobnov EM, Apweiler R (2001) InterProScan: an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17(9):847–848CrossRefPubMedGoogle Scholar
  83. Zhang J, Yun J, Shang Z, Zhang X, Pan B (2009) Design and optimization of a linker for fusion protein construction. Prog Nat Sci 19(10):1197–1200CrossRefGoogle Scholar
  84. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhou J, Zhang W, Yan S, Xiao J, Zhang Y, Li B, Pan Y, Wang Y (2013) Diversity of virophages in metagenomic datasets. J Virol 87(8):4225–4236CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zhou J, Sun D, Childers A, McDermott TR, Wang Y, Liles MR (2015) Three novel virophage genomes discovered from Yellowstone Lake metagenomes. J Virol 89(2):1278–1285CrossRefPubMedGoogle Scholar
  87. Ziegelin G, Scherzinger E, Lurz R, Lanka E (1993) Phage P4 alpha protein is multifunctional with origin recognition, helicase and primase activities. EMBO J 12(9):3703–3708PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations