Skip to main content
Log in

A Role for the Mutagenic DNA Self-Catalyzed Depurination Mechanism in the Evolution of 7SL-Derived RNAs

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The Alu element, the most prevalent SINE (short interspersed element) in the human genome, is one of the many RNA-encoding genes that evolved from the 7SL RNA gene. During analysis of the evolution of 7SL-derived RNAs, two distinct evolutionary intermediates capable of self-catalyzed DNA depurination (SDP) were identified. These SDP sequences spontaneously create apurinic sites that can result in increased mutagenesis due to their error-prone repair. This DNA self-depurination mechanism has been shown both in vitro and in vivo to lead to substitution and short frameshift mutations at a frequency that far exceeds their occurrence due to random errors in DNA replication. In both evolutionary intermediates, the same self-depurination sequence overlaps motifs necessary for successful transcription and SRP9/14 (signal recognition particle) binding; hence, mutations in this region could disrupt RNA activity. Yet, the 7SL-derived RNAs that arose from the elements capable of SDP show significant diversity in this region, and every new sequence retains the transcription and SRP9/14-binding motifs, even as it has lost the SDP sequence. While some (but not all) of the mutagenesis can be alternatively attributed to CpG decay, the very fact that the self-depurinating sequences are selectively discarded in all cases suggests that this was evolutionarily motivated to prevent further destructive mutagenesis by the SDP mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Weichenrieder et al. 2000. Starting from the 5′-end, every tenth residue is numbered

Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez-Dominguez JR, Amosova O, Fresco JR (2013) Self-catalytic DNA depurination underlies human β-globin gene mutations at codon 6 that cause anemias and thalassemias. J Biol Chem 288:11581–11589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amosova O, Coulter R, Fresco JR (2006) Self-catalyzed site-specific depurination of guanine residues within gene sequences. Proc Natl Acad Sci U S A 103:4392–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amosova O, Smith A, Fresco JR (2011a) The consensus sequence for self-catalyzed site-specific G residue depurination in DNA. J Biol Chem 286:36316–36321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amosova O, Kumar V, Deutsch A, Fresco JR (2011b) Self-catalyzed site-specific depurination of G residues mediated by cruciform extrusion in closed circular DNA plasmids. J Biol Chem 286:36322–36330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379

    Article  CAS  PubMed  Google Scholar 

  • Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, Weichenrieder O, Devine SE (2008) Active Alu retrotransposons in the human genome. Genome Res 18:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boiteux S, Guillet M (2004) Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amst) 3:1–12

    Article  CAS  Google Scholar 

  • Bovia F, Wolff N, Ryser S, Strub K (1997) The SRP9/14 subunit of the human signal recognition particle binds to a variety of Alu-like RNAs and with higher affinity than its mouse homolog. Nucleic Acids Res 25:318–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesnokov I, Schmid CW (1996) Flanking sequences of an Alu source stimulate transcription in vitro by interacting with sequence-specific transcription factors. J Mol Evol 42:30–36

    Article  CAS  PubMed  Google Scholar 

  • Daniels GR, Deininger PL (1991) Characterization of a third major SINE family of repetitive sequences in the galago genome. Nucleic Acids Res 19:1649–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deininger PL, Daniels GR (1986) The recent evolution of mammalian repetitive DNA elements. Trends Genet 2:76–80

    Article  CAS  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    Article  CAS  PubMed  Google Scholar 

  • Duncan BK, Miller JH (1980) Mutagenic deamination of cytosine residues in DNA. Nature 287:560–561

    Article  CAS  PubMed  Google Scholar 

  • Emde G, Frontzek A, Benecke BJ (1997) Secondary structure of the nascent 7S L RNA mediates efficient transcription by RNA polymerase III. RNA 3:538–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiala KA, Suo ZC (2007) Sloppy bypass of an abasic lesion catalyzed by a Y-family DNA polymerase. J Biol Chem 282:8199–8206

    Article  CAS  PubMed  Google Scholar 

  • Fresco JR, Amosova O (2017) Site-specific self-catalyzed DNA depurination: a biological mechanism that leads to mutations and creates sequence diversity. Ann Rev Biochem 86:461–484

    Article  CAS  PubMed  Google Scholar 

  • Fresco JR, Alberts BM, Doty P (1960) Some molecular details of the secondary structure of ribonucleic acid. Nature 188:98–101

    Article  CAS  PubMed  Google Scholar 

  • Geiduschek EP, Tocchini-Valentini GP (1988) Transcription by RNA polymerase III. Annu Rev Biochem 57:873–914

    Article  CAS  PubMed  Google Scholar 

  • Gentles AJ, Wakefield MJ, Kohany O, Gu W, Batzer MA, Pollock DD, Jurka J (2007) Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 17:992–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gundelfinger ED, Krause E, Melli M, Dobberstein B (1983) The organization of the 7SL RNA in the signal recognition particle. Nucleic Acids Res 11:7363–7374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huck L, Scherrer A, Terzi L, Johnson AE, Bernstein HD, Cusack S, Weichenrieder O, Strub K (2004) Conserved tertiary base pairing ensures proper RNA folding and efficient assembly of the signal recognition particle Alu domain. Nucleic Acids Res 32:4915–4924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajikawa M, Okada N (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111:433–444

    Article  CAS  PubMed  Google Scholar 

  • Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov AV, Kiefmann M, Ebnet K, Khanam T, Muddashetty RS, Brosius J (2005) Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J Mol Biol 353:88–103

    Article  CAS  PubMed  Google Scholar 

  • Korolev VG (2005) Base excision repair: AP endonucleases and DNA polymerases. Russ J Genet 41:1063–1070

    Article  CAS  Google Scholar 

  • Kraft R, Kadyk L, Leinwand LA (1992) Sequence organization of variant mouse 4.5 S RNA genes and pseudogenes. Genomics 12:555–566

    Article  CAS  PubMed  Google Scholar 

  • Kramerov DA, Vassetzky NS (2001) Structure and origin of a novel dimeric retroposon B1-diD. J Mol Evol 52:137–143

    Article  CAS  PubMed  Google Scholar 

  • Kramerov DA, Vassetzky NS (2005) Short retroposons in eukaryotic genomes. Int Rev Cytol 247:165–221

    Article  CAS  PubMed  Google Scholar 

  • Kramerov DA, Vassetzky NS (2011). SINEs. Wiley Interdiscip Rev RNA 2:772–786

    Article  CAS  PubMed  Google Scholar 

  • Kriegs JO, Churakov G, Jurka J, Brosius J, Schmitz J (2007) Evolutionary history of 7SL RNA-derived SINEs in supraprimates. Trends Genet 23:158–161

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lee IY, Westaway D, Smit A.F.A., Wang K, Seto J, Chen L, Acharya C, Ankener M, Baskin D, Cooper C et al (1998) Complete genomic sequence and analysis of the prion protein gene region from three mammalian species. Genome Res 8:1022–1037

    Article  CAS  PubMed  Google Scholar 

  • Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610–3618

    Article  CAS  PubMed  Google Scholar 

  • Ludwig A, Rozhdestvensky TS, Kuryshev VY, Schmitz J, Brosius J (2005) An unusual primate locus that attracted two independent Alu insertions and facilitates their transcription. J Mol Biol 350:200–214

    Article  CAS  PubMed  Google Scholar 

  • Marck C, Kachouri-Lafond R, Lafontaine I, Westhof E, Dujon B, Grosjean H (2006) The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res 34:1816–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martignetti JA, Brosius J (1993) BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. Proc Natl Acad Sci USA 90:11563–11567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda T, Vande Berg BJ, Bebenek K, Osheroff WP, Wilson SH, Kunkel TA (2003) The base substitution fidelity of DNA polymerase β-dependent single nucleotide base excision repair. J Biol Chem 278:25947–25951

    Article  CAS  PubMed  Google Scholar 

  • Nilsson MA, Janke A, Murchison EP, Ning Z, Hallström BM (2012) Expansion of CORE-SINEs in the genome of the Tasmanian devil. BMC Genomics 13:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishihara H, Terai Y, Okada N (2002) Characterization of novel Alu- and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol Biol Evol 19:1964–1972

    Article  CAS  PubMed  Google Scholar 

  • Orioli A, Pascali C, Pagano A, Teichmann M, Dieci G (2012) RNA polymerase III transcription control elements: themes and variations. Gene 493:185–194

    Article  CAS  PubMed  Google Scholar 

  • Perez-Stable C, Shen CK (1986) Competitive and cooperative functioning of the anterior and posterior promoter elements of an Alu family repeat. Mol Cell Biol 6:2041–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Stable C, Ayres TM, Shen CK (1984) Distinctive sequence organization and functional programming of an Alu repeat promoter. Proc Natl Acad Sci U S A 81:5291–5295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poritz MA, Bernstein HD, Strub K, Zopf D, Wilhelm H, Walter P (1990) An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle. Science 250:1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Price AL, Eskin E, Pevzner PA (2004) Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res 14:2245–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purrello R, Molina M, Wang Y, Smulevich G, Fossella J, Fresco JR, Spiro TG (1993) Keto-iminol tautomerism of protonated cytidine monophosphate characterized by ultraviolet resonance Raman spectroscopy: implications of C+ iminol tautomer for base mispairing. J Am Chem Soc 115:760–767

    Article  CAS  Google Scholar 

  • Quentin Y (1992a) Origin of the Alu family: a family of Alu-like monomers gave birth to the left and the right arms of the Alu elements. Nucleic Acids Res 20:3397–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quentin Y (1992b) Fusion of a free left Alu monomer and a free right Alu monomer at the origin of the Alu family in the primate genomes. Nucleic Acids Res 20:487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quentin Y (1994) A master sequence related to a free left Alu monomer (FLAM) at the origin of the B1 family in rodent genomes. Nucleic Acids Res 22:2222–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarrowa J, Chang DY, Maraia RJ (1997) The decline in human Alu retroposition was accompanied by an asymmetric decrease in SRP9/14 binding to dimeric Alu RNA and increased expression of small cytoplasmic Alu RNA. Mol Cell Biol 17:1144–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serdobova IM, Kramerov DA (1998) Short retroposons of the B2 superfamily: evolution and application for the study of rodent phylogeny. J Mol Evol 46:202–214

    Article  CAS  PubMed  Google Scholar 

  • Shankar R, Grover D, Brahmachari SK, Mukerji M (2004) Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements. BMC Evol Biol 4:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp SJ, Schaack J, Cooley L, Burke DJ, Söll D (1985) Structure and transcription of eukaryotic tRNA genes. CRC Crit Rev Biochem 19:107–144

    Article  CAS  PubMed  Google Scholar 

  • Shen MR, Batzer MA, Deininger PL (1991) Evolution of the master Alu gene(s). J Mol Evol 33:311–320

    Article  CAS  PubMed  Google Scholar 

  • Simonelli V, Narciso L, Dogliotti E, Fortini P (2005) Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res 33:4404–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinnett D, Richer C, Deragon JM, Labuda D (1991) Alu RNA secondary structure consists of two independent 7 SL RNA-like folding units. J Biol Chem 266:8675–8678

    CAS  PubMed  Google Scholar 

  • Tiedge H, Chen W, Brosius J (1993) Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci 13:2382–2390

    CAS  PubMed  Google Scholar 

  • Topal M, Fresco JR (1976) Complementary base pairing and the origin of substitution mutations. Nature 263:285–289

    Article  CAS  PubMed  Google Scholar 

  • Ullu E, Tschudi C (1984) Alu sequences are processed 7SL RNA genes. Nature 312:171–172

    Article  CAS  PubMed  Google Scholar 

  • Vassetzky NS, Ten OA, Kramerov DA (2003) B1 and related SINEs in mammalian genomes. Gene 319:149–160

    Article  CAS  PubMed  Google Scholar 

  • Veniaminova NA, Vassetzky NS, Kramerov DA (2007) B1 SINEs in different rodent families. Genomics 89:678–686

    Article  CAS  PubMed  Google Scholar 

  • Walter P, Blobel G (1980) Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc Natl Acad Sci USA 77:7112–7116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter P, Blobel G (1982) Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299:691–698

    Article  CAS  PubMed  Google Scholar 

  • Weichenrieder O, Wild K, Strub K, Cusack S (2000) Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408:167–173

    Article  CAS  PubMed  Google Scholar 

  • Willard C, Nguyen HT, Schmid CW (1987) Existence of at least three distinct Alu subfamilies. J Mol Evol 26:180–186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported in its early phases by NIH grants HL63888 and CA088547, and more recently by a grant from the Higgins Trust to Princeton University. We are grateful to Nina Luning Prak for helpful discussions in the early phases of this research, to both her and Olga Amosova for critical readings of the manuscript, and to Zachary Keller for help with literature searches, calculations, and preparation of figures.

Author information

Authors and Affiliations

Authors

Contributions

JRF suggested the project; the literature searches and data collection was conducted by MPG; and the interpretations and manuscript writing were done jointly.

Corresponding author

Correspondence to Jacques R. Fresco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gold, M.P., Fresco, J.R. A Role for the Mutagenic DNA Self-Catalyzed Depurination Mechanism in the Evolution of 7SL-Derived RNAs. J Mol Evol 85, 84–98 (2017). https://doi.org/10.1007/s00239-017-9811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-017-9811-y

Keywords

Navigation