Microevolution Rather than Large Genome Divergence Determines the Effectiveness of Legume–Rhizobia Symbiotic Interaction Under Field Conditions

  • Cintia Jozefkowicz
  • Silvina Brambilla
  • Romina Frare
  • Margarita Stritzler
  • Mariana Puente
  • Carlos Piccinetti
  • Gabriela Soto
  • Nicolás Ayub
Letter to the Editor

Abstract

Despite the vast screening for natural nitrogen-fixing isolates by public and private consortia, no significant progresses in the production of improved nitrogen-fixing inoculants for alfalfa production have been made in the last years. Here, we present a comprehensive characterization of the nitrogen-fixing strain Ensifer meliloti B399 (originally named Rhizobium meliloti 102F34), probably the inoculant most widely used in alfalfa production since the 1960s. Complete nucleotide sequence and genome analysis of strain B399 showed that the three replicons present in this commercial strain and the model bacterium Ensifer meliloti 1021 are extremely similar to each other in terms of nucleotide identity and synteny conservation. In contrast to that observed in B399-treated plants, inoculation of plants with strain 1021 did not improve nitrogen content in different alfalfa cultivars under field conditions, suggesting that a small genomic divergence can drastically impact on the symbiotic phenotype. Therefore, in addition to the traditional screening of natural nitrogen-fixing isolates, the genome engineering of model strains could be an attractive strategy to improve nitrogen fixation in legume crops.

Keywords

Microevolution Legumes Rhizobia Commercial inoculants Field conditions 

References

  1. Burton JC (1972) Alfalfa Science and Technology. In: Hanson CH (ed) Nodulation and symbiotic nitrogen fixation. American Society of Agronomy, Madison, pp 229–246Google Scholar
  2. di Cenzo GC, Finan TM (2015) Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome. Mol Genet Genom 290:1345CrossRefGoogle Scholar
  3. diCenzo GC, Checcucci A, Bazzicalupo M, Mengoni A, Viti C, Dziewit L, Finan TM, Galardini M, Fondi M (2016) Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti. Nat Commun 7:12219CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci 77:7347CrossRefPubMedPubMedCentralGoogle Scholar
  5. Fox AR, Soto G, Valverde C, Russo D, Lagares A Jr, Zorreguieta A, Alleva K, Pascuan C, Frare R, Mercado-Blanco J, Dixon R, Ayub ND (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18:3522CrossRefPubMedGoogle Scholar
  6. Galardini M, Pini F, Bazzicalupo M, Biondi EG, Mengoni A (2013) Replicon-dependent bacterial genome evolution: the case of Sinorhizobium meliloti. Genome Biol Evol 5:542CrossRefPubMedPubMedCentralGoogle Scholar
  7. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668CrossRefPubMedGoogle Scholar
  8. Garcia AN, Ayub ND, Fox AR, Gomez MC, Dieguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G (2014) Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol 14:248CrossRefPubMedPubMedCentralGoogle Scholar
  9. Jozefkowicz C, Bottero E, Pascuan C, Pagano E, Ayub ND, Soto G (2016) Minimizing the time and cost of production of transgenic alfalfa libraries using the highly efficient completely sequenced vector pPZP200BAR. Plant Cell Rep 35:1987CrossRefPubMedGoogle Scholar
  10. Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119CrossRefPubMedGoogle Scholar
  11. Sanz-Sáez Á, Erice G, Aguirreolea J, Irigoyen JJ, Sánchez-Díaz M (2012a) Alfalfa yield under elevated CO2 and temperature depends on the Sinorhizobium strain and growth season. Environ Exp Bot 77:267CrossRefGoogle Scholar
  12. Sanz-Sáez Á, Erice G, Aguirreolea J, Muñoz F, Sánchez-Díaz M, Irigoyen JJ (2012b) Alfalfa forage digestibility, quality and yield under future climate change scenarios vary with Sinorhizobium meliloti strain. J Plant Physiol 169:782CrossRefPubMedGoogle Scholar
  13. Schneiker-Bekel S, Wibberg D, Bekel T, Blom J, Linke B, Neuweger H, Stiens M, Vorhölter F-J, Weidner S, Goesmann A, Pühler A, Schlüter A (2011) The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome. J Biotechnol 155:20CrossRefPubMedGoogle Scholar
  14. Segundo E, Martinez-Abarca F, van Dillewijn P, Fernández-López M, Lagares A, Martinez-Drets G, Niehaus K, Pühler A, Toro N (1999) Characterisation of symbiotically efficient alfalfa-nodulating rhizobia isolated from acid soils of Argentina and Uruguay. FEMS Microbiol Ecol 28:169CrossRefGoogle Scholar
  15. Soto G, Fox AR, Ayub ND (2013) Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes. J Mol Evol 77:3CrossRefPubMedGoogle Scholar
  16. Sugawara M, Epstein B, Badgley BD, Unno T, Xu L, Reese J, Gyaneshwar P, Denny R, Mudge J, Bharti AK, Farmer AD, May GD, Woodward JE, Medigue C, Vallenet D, Lajus A, Rouy Z, Martinez-Vaz B, Tiffin P, Young ND, Sadowsky MJ (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol 14:R17CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Cintia Jozefkowicz
    • 1
    • 2
  • Silvina Brambilla
    • 2
  • Romina Frare
    • 1
    • 2
  • Margarita Stritzler
    • 1
    • 2
  • Mariana Puente
    • 3
  • Carlos Piccinetti
    • 3
  • Gabriela Soto
    • 1
    • 2
  • Nicolás Ayub
    • 1
    • 2
  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas, CABABuenos AiresArgentina
  2. 2.Instituto de Genética Ewald A. Favret (INTA)Buenos AiresArgentina
  3. 3.Instituto de Microbiología y Zoología Agrícola (INTA)Buenos AiresArgentina

Personalised recommendations