Genetic Basis of Exploiting Ecological Opportunity During the Long-Term Diversification of a Bacterial Population

  • Jessika Consuegra
  • Jessica Plucain
  • Joël Gaffé
  • Thomas Hindré
  • Dominique Schneider
Original Article


Adaptive diversification is an essential evolutionary process, one that produces phenotypic innovations including the colonization of available ecological niches. Bacteria can diverge in sympatry when ecological opportunities allow, but the underlying genetic mechanisms are often unknown. Perhaps, the longest-lasting adaptive diversification seen in the laboratory occurred during the long-term evolution experiment, in which 12 populations of Escherichia coli have been evolving independently for more than 65,000 generations from a common ancestor. In one population, two lineages, S and L, emerged at ~6500 generations and have dynamically coexisted ever since by negative frequency-dependent interactions mediated, in part, by acetate secretion by L. Mutations in spoT, arcA, and gntR promoted the emergence of the S lineage, although they reproduced only partially its phenotypic traits. Here, we characterize the evolved mechanism of acetate consumption by the S lineage that enabled invasion and coexistence with the L lineage. We identified an additional mutation in acs that, together with the arcA mutation, drove an early restructuring of the transcriptional control of central metabolism in S, leading to improved acetate consumption. Pervasive epistatic interactions within the S genome contributed to the exploitation of this new ecological opportunity. The emergence and maintenance of this long-term polymorphism is a complex multi-step process.


Experimental evolution Adaptive diversification Epistasis Gene regulation 


  1. Abrams PA, Cortez MH (2015) Is competition needed for ecological character displacement? Does displacement decrease competition? Evolution 69:3039–3053. doi:10.1111/evo.12816 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105:7899–7906. doi:10.1073/pnas.0803151105 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Blount ZD, Barrick JE, Davidson CJ, Lenski RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:513–518. doi:10.1038/nature11514 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brock M, Maerker C, Schutz A, Volker U, Buckel W (2002) Oxidation of propionate to pyruvate in Escherichia coli—involvement of methylcitrate dehydratase and aconitase. Eur J Biochem 269:6184–6194. doi:10.1046/j.1432-1033.2002.03336.x CrossRefPubMedGoogle Scholar
  5. Browning DF, Beatty CM, Sanstad EA, Gunn KE, Busby SJW, Wolfe AJ (2004) Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol Microbiol 51:241–254. doi:10.1046/j.1365-2958.2003.03824.x CrossRefPubMedGoogle Scholar
  6. Cho BK, Knight EM, Palsson B (2006) Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA. Microbiology 152:2207–2219. doi:10.1099/mic.0.28912-0 CrossRefPubMedGoogle Scholar
  7. Friesen ML, Saxer G, Travisano M, Doebeli M (2004) Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in Escherichia coli. Evolution 58:245–260. doi:10.1111/j.0014-3820.2004.tb01642.x CrossRefPubMedGoogle Scholar
  8. Großkopf T, Consuegra J, Gaffé J, Willison JC, Lenski RE, Soyer OS, Schneider D (2016) Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria in a long-term evolution experiment. BMC Evol Biol 16:163. doi:10.1186/s12862-016-0733-x CrossRefPubMedPubMedCentralGoogle Scholar
  9. Herron MD, Doebeli M (2013) Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol 11:e1001490. doi:10.1371/journal.pbio.1001490 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jeon Y, Lee YS, Han JS, Kim JB, Hwang DS (2001) Multimerization of phosphorylated and non-phosphorylated ArcA is necessary for the response regulator function of the Arc two-component signal transduction system. J Biol Chem 276:40873–40879. doi:10.1074/jbc.M104855200 CrossRefPubMedGoogle Scholar
  11. Jeong H, Barbe V, Lee CH, Vallenet D, Yu DS, Choi SH, Couloux A, Lee SW, Yoon SH, Cattolico L, Hur CG, Park HS, Segurens B, Kim SC, Oh TK, Lenski RE, Studier FW, Daegelen P, Kim JF (2009) Genome Sequences of Escherichia coli B strains REL606 and BL21(DE3). J Mol Biol 394:644–652. doi:10.1016/j.jmb.2009.09.052 CrossRefPubMedGoogle Scholar
  12. Kumari S, Beatty CM, Browning DF, Busby SJW, Simel EJ, Hovel-Miner G, Wolfe AJ (2000) Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182:4173–4179. doi:10.1128/JB.182.15.4173-4179.200 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Laland KN, Odling-Smee FJ, Feldman MW (1999) Evolutionary consequences of niche construction and their implications for ecology. Proc Natl Acad Sci USA 96:10242–10247. doi:10.1073/pnas.96.18.10242 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Leiby N, Marx CJ (2014) Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli. PLoS Biol 12:10. doi:10.1371/journal.pbio.1001789 CrossRefGoogle Scholar
  15. Lenski RE, Rose MR, Simpson SC, Tadler SC (1991) Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 138:1315–1341. doi:10.1086/285289 CrossRefGoogle Scholar
  16. Lieberman TD, Michel JB, Aingaran M, Potter-Bynoe G, Roux D, Davis MR, Skurnik D, Leiby N, LiPuma JJ, Goldberg JB, McAdam AJ, Priebe GP, Kishony R (2011) Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 43:1275–1280. doi:10.1038/ng.997 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179:6228–6237. doi:10.1128/jb.179.20.6228-6237.199 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Liu X, De Wulf P (2004) Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J Biol Chem 279:12588–12597. doi:10.1074/jbc.M313454200 CrossRefPubMedGoogle Scholar
  19. Malpica R, Sandoval GR, Rodriguez C, Franco B, Georgellis D (2006) Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid Redox Signal 8:781–795. doi:10.1089/ars.2006.8.78 CrossRefPubMedGoogle Scholar
  20. Molina I, Pellicer MT, Badia J, Aguilar J, Baldoma L (1994) Molecular characterization of Escherichia coli malate synthase G. Differentiation with the malate synthase A isoenzyme. Eur J Biochem 224:541–548. doi:10.1111/j.1432-1033.1994.00541.x CrossRefPubMedGoogle Scholar
  21. Park DM, Akhtar MS, Ansari AZ, Landick R, Kiley PJ (2013) The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet 9:18. doi:10.1371/journal.pgen.1003839 Google Scholar
  22. Plucain J, Hindre T, Le Gac M, Tenaillon O, Cruveiller S, Medigue C, Leiby N, Harcombe WR, Marx CJ, Lenski RE, Schneider D (2014) Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli. Science 343:1366–1369. doi:10.1126/science.1248688 CrossRefPubMedGoogle Scholar
  23. Rosenzweig RF, Sharp RR, Treves DS, Adams J (1994) Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137:903–917PubMedPubMedCentralGoogle Scholar
  24. Rozen DE, Lenski RE (2000) Long-term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism. Am Nat 155:24–35. doi:10.1086/303299 PubMedGoogle Scholar
  25. Rozen DE, Schneider D, Lenski RE (2005) Long-term experimental evolution in Escherichia coli. XIII. Phylogenetic history of a balanced polymorphism. J Mol Evol 61:171–180. doi:10.1007/s00239-004-0322-2 CrossRefPubMedGoogle Scholar
  26. Rozen DE, Philippe N, de Visser JA, Lenski RE, Schneider D (2009) Death and cannibalism in a seasonal environment facilitate bacterial coexistence. Ecol Lett 12:34–44. doi:10.1111/j.1461-0248.2008.01257.x CrossRefPubMedGoogle Scholar
  27. Schluter D (2000) The ecology of adaptive radiations. Oxford University Press, OxfordGoogle Scholar
  28. Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of Escherichia coli. Nature 387:703–705. doi:10.1038/42701 CrossRefPubMedGoogle Scholar
  29. Spencer CC, Tyerman J, Bertrand M, Doebeli M (2008) Adaptation increases the likelihood of diversification in an experimental bacterial lineage. Proc Natl Acad Sci USA 105:1585–1589. doi:10.1073/pnas.0708504105 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Spiers AJ, Kahn SG, Bohannon J, Travisano M, Rainey PB (2002) Adaptive divergence in experimental Populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161:33–46. doi:10.1534/genetics.113.154948 PubMedPubMedCentralGoogle Scholar
  31. Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, Wu GC, Wielgoss S, Cruveiller S, Médigue C, Schneider D, Lenski RE (2016) Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536:165–170. doi:10.1038/nature18959 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Toro-Roman A, Mack TR, Stock AM (2005) Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the alpha4-beta5-alpha5 face. J Mol Biol 349:11–26. doi:10.1016/j.jmb.2005.03.059 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Treves DS, Manning S, Adams J (1998) Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol 15:789–797. doi:10.1093/oxfordjournals.molbev.a025984 CrossRefPubMedGoogle Scholar
  34. Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Met 3:623–628. doi:10.1038/nmeth895 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.University of Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAGGrenobleFrance

Personalised recommendations