Journal of Molecular Evolution

, Volume 84, Issue 4, pp 174–186 | Cite as

Molecular Evolutionary Constraints that Determine the Avirulence State of Clostridium botulinum C2 Toxin

Original Article

Abstract

Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 toxin along with botulinum neurotoxins. C2 toxin is belonged to binary toxin A family in bacterial ADP-ribosylation superfamily. A structural and functional diversity of binary toxin A family was inferred from different evolutionary constraints to determine the avirulence state of C2 toxin. Evolutionary genetic analyses revealed evidence of C2 toxin cluster evolution through horizontal gene transfer from the phage or plasmid origins, site-specific insertion by gene divergence, and homologous recombination event. It has also described that residue in conserved NAD-binding core, family-specific domain structure, and functional motifs found to predetermine its virulence state. Any mutational changes in these residues destabilized its structure–function relationship. Avirulent mutants of C2 toxin were screened and selected from a crucial site required for catalytic function of C2I and pore-forming function of C2II. We found coevolved amino acid pairs contributing an essential role in stabilization of its local structural environment. Avirulent toxins selected in this study were evaluated by detecting evolutionary constraints in stability of protein backbone structure, folding and conformational dynamic space, and antigenic peptides. We found 4 avirulent mutants of C2I and 5 mutants of C2II showing more stability in their local structural environment and backbone structure with rapid fold rate, and low conformational flexibility at mutated sites. Since, evolutionary constraints-free mutants with lack of catalytic and pore-forming function suggested as potential immunogenic candidates for treating C. botulinum infected poultry and veterinary animals. Single amino acid substitution in C2 toxin thus provides a major importance to understand its structure–function link, not only of a molecule but also of the pathogenesis.

Keywords

Binary toxin A ADP ribosyltransferase Site-directed mutagenesis Molecular dynamics Coevolution 

Supplementary material

239_2017_9791_MOESM1_ESM.docx (765 kb)
Supplementary material 1 (DOCX 764 KB)

References

  1. Aktories K, Barth H (2004) Clostridium botulinum C2 toxin—new insights into the cellular up-take of the actin-ADP-ribosylating toxin. Int J Med Microbiol 293:557–564PubMedCrossRefGoogle Scholar
  2. Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278:4526–4543PubMedCrossRefGoogle Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arenas M, Dos Santos HG, Posada D, Bastolla U (2013) Protein evolution along phylogenetic histories under structurally constrained substitution models. Bioinformatics 29:3020–3028PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barth H, Preiss JC, Hofmann F, Aktories K (1998) Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis. J Biol Chem 273:29506–29511PubMedCrossRefGoogle Scholar
  6. Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68:373–402PubMedPubMedCentralCrossRefGoogle Scholar
  7. Benson EL, Huynh PD, Finkelstein A, Collier RJ (1998) Identification of residues lining the anthrax protective antigen channel. BioChemistry 37:3941–3948PubMedCrossRefGoogle Scholar
  8. Blöcker D, Barth H, Maier E, Benz R, Barbieri JT, Aktories K (2000) The C terminus of component C2II of Clostridium botulinum C2 toxin is essential for receptor binding. Infect Immun 68:4566–4573PubMedPubMedCentralCrossRefGoogle Scholar
  9. Blöcker D, Pohlmann K, Haug G, Bachmeyer C, Benz R, Aktories K, Barth H (2003a) Clostridium botulinum C2 toxin: low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells. J Biol Chem 278:37360–37367PubMedCrossRefGoogle Scholar
  10. Blöcker D, Bachmeyer C, Benz R, Aktories K, Barth H (2003b) Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo. BioChemistry 42:5368–5377PubMedCrossRefGoogle Scholar
  11. Chavan AJ, Nemoto Y, Narumiya S, Kozaki S, Haley BE (1992) NAD+ binding site of Clostridium botulinum C3 ADP-ribosyltransferase Identification of peptide in the adenine ring binding domain using 2-azido NAD. J Biol Chem 267:14866–14870PubMedGoogle Scholar
  12. Chellapandi P (2014) Structural-functional integrity of hypothetical proteins identical to ADP-ribosylation Superfamily upon point mutations. Protein Pept Lett 21:22–35Google Scholar
  13. Chellapandi P, Shree SS, Bharathi M (2013) Phylogenetic approach for inferring the origin and functional evolution of bacterial ADP-ribosylation superfamily. Protein Pept Lett 20:1054–1065PubMedCrossRefGoogle Scholar
  14. Choi SS, Hannehall S (2013) Three independent determinants of protein evolutionary rate. J Mol Evol 76:98–111PubMedCrossRefGoogle Scholar
  15. Correia BE et al (2014) Proof of principle for epitope-focused vaccine design. Nature 507:201–206PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cunha CE, Moreira GM, Salvarani FM, Neves MS, Lobato FC, Dellagostin OA, Conceição FR (2014) Vaccination of cattle with a recombinant bivalent toxoid against botulism serotypes C and D. Vaccine 32:214–216PubMedCrossRefGoogle Scholar
  17. De Oliveira CAF, Grant BJ, Zhou M, McCammon JA (2011) Large-scale conformational changes of trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation. PLoS Comput Biol 7:e1002178PubMedPubMedCentralCrossRefGoogle Scholar
  18. De Brevern AG, Bornot A, Craveur P, Etchebest C, Gelly JC (2012) PredyFlexy: flexibility and local structure prediction from sequence. Nucleic Acids Res 40:W317–W322PubMedPubMedCentralCrossRefGoogle Scholar
  19. Domenighini M, Rappuoli R (1996) Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol Microbiol 21:667–674PubMedCrossRefGoogle Scholar
  20. Domenighini M, Magagnoli C, Pizza M, Rappuoli R (1994) Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins. Mol Microbiol 14:41–50PubMedCrossRefGoogle Scholar
  21. Eckhardt M, Barth H, Blöcker D, Aktories K (2000) Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem 275:2328–3234PubMedCrossRefGoogle Scholar
  22. Engelhardt BE, Jordan MI, Srouji JR, Brenner SE (2011) Genome-scale phylogenetic function annotation of large and diverse protein families. Genome Res 21:1969–1980PubMedPubMedCentralCrossRefGoogle Scholar
  23. Fahrer J, Plunien R, Binder U, Langer T, Seliger H, Barth H (2010a) Genetically engineered clostridial C2 toxin as a novel delivery system for living mammalian cells. Bioc Onjug Chem 21:130–139CrossRefGoogle Scholar
  24. Fahrer J, Rieger J, Zandbergen GV, Barth H (2010b) The C2-streptavidin delivery system promotes the uptake of biotinylated molecules in macrophages and T-leukemia cells. Biol Chem 391:1315–1325PubMedCrossRefGoogle Scholar
  25. Foley J (2015) Mini-review: strategies for variation and evolution of bacterial antigens. Comput Struct Biotechnol J 13:407–416PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fujii N, Kubota T, Shirakawa S, Kimura K, Ohishi I, Moriishi K, Isogai E, Isogai H (1996) Characterization of component-I gene of botulinum C2 toxin and PCR detection of its gene in clostridial species. Biochem Biophys Res Commun 220:353–359PubMedCrossRefGoogle Scholar
  27. Gerlt JA, Babbitt PC (2001) Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu Rev Biochem 70:209–246PubMedCrossRefGoogle Scholar
  28. Gil LA, Da Cunha CE, Moreira GM, Salvarani FM, Assis RA, Lobato FC, Mendonça M, Dellagostin OA, Conceição FR (2013) Production and evaluation of a recombinant chimeric vaccine against Clostridium botulinum neurotoxin types C and D. PLoS ONE 8:e69692PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gromiha MM, Thangakani AM, Selvaraj S (2006) FOLD-RATE: prediction of protein folding rates from amino acid sequence. Nucleic Acids Res 34:W70–W74PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gu X, Vander Velden K (2002) DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics 18:500–501PubMedCrossRefGoogle Scholar
  31. Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011) Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. BioChemistry 50:10422–10430PubMedPubMedCentralCrossRefGoogle Scholar
  32. Han S, Tainer JA (2002) The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. Int J Med Microbiol 291:429–523CrossRefGoogle Scholar
  33. Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936PubMedCrossRefGoogle Scholar
  34. Han S, Arvai AS, Clancy SB, Tainer JA (2001) Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. J Mol Biol 305:95–107PubMedCrossRefGoogle Scholar
  35. Ho BK, Agard DA (2010) Conserved tertiary couplings stabilize elements in the PDZ fold, leading to characteristic patterns of domain conformational flexibility. Protein Sci 19:398–411PubMedPubMedCentralGoogle Scholar
  36. Holbourn KP, Sutton JM, Evans HR, Shone CC, Acharya KR (2005) Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase. Proc Natl Acad Sci USA 102:5357–5362PubMedPubMedCentralCrossRefGoogle Scholar
  37. Huang LT, Gromiha MM (2010) First insight into the prediction of protein folding rate change upon point mutation. Bioinformatics 26:2121–2127PubMedCrossRefGoogle Scholar
  38. Huang LT, Gromiha MM (2012) Real value prediction of protein folding rate change upon point mutation. J Comput Aided Mol Des 26:339–347PubMedCrossRefGoogle Scholar
  39. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  40. Jank T, Aktories K (2013) Strain-alleviation model of ADP-ribosylation. Proc Natl Acad Sci USA 110:4163–4164PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jeong JS, Kim D (2012) Reliable and robust detection of coevolving protein residues. Protein Eng 25:705–713CrossRefGoogle Scholar
  42. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174PubMedCrossRefGoogle Scholar
  43. Kowarsch A, Fuchs A, Frishman D, Pagel P (2010) Correlated Mutations: a hallmark of phenotypic amino acid substitutions. PLoS Comput Biol 6:e1000923PubMedPubMedCentralCrossRefGoogle Scholar
  44. Krüger M, Skau M, Shehata AA, Schrödl W (2013) Efficacy of Clostridium botulinum types C and D toxoid vaccination in Danish cows. Anaerobe 23:97–101PubMedCrossRefGoogle Scholar
  45. Kuroda D, Shirai H, Jacobson MP, Nakamura H (2012) Computer-aided antibody design. Protein Eng Des Sel 25:507–521PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kuzmanic A, Zagrovic B (2010) Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys J 98:861–871PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lang AE, Neumeyer T, Sun J, Collier RJ, Benz R, Aktories K (2008) Amino acid residues involved in membrane insertion and pore formation of Clostridium botulinum C2 toxin. BioChemistry 47:8406–8413PubMedCrossRefGoogle Scholar
  48. Lapelosa M, Gallicchio E, Arnold GF, Arnold E, Levy RM (2009) In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes. J Mol Biol 385:675–691PubMedCrossRefGoogle Scholar
  49. Leppla SH (1995) Anthrax toxins. In: Handbook of natural toxins, bacterial toxins and virulence factors in disease, vol 8. New York, Marcel Dekker, pp. 543–572Google Scholar
  50. Liang JH, Dai X, Dong C, Meng JH (2010) A single amino acid substitution changes antigenicity of ORF2-encoded proteins of hepatitis E virus. Int J Mol Sci 11:2962–2975PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lio P, Goldman N (1999) Using protein structural information in evolutionary inference: transmembrane proteins. Mol Biol Evol 16:1696–1710PubMedCrossRefGoogle Scholar
  52. Lukman S, Grant GH, Bui JM (2010) Unraveling evolutionary constraints: a heterogeneous conservation in dynamics of the titin Ig domains. FEBS Lett 584:1235–1239PubMedCrossRefGoogle Scholar
  53. Maguid S, Fernández-Alberti S, Parisi G, Echave J (2006) Evolutionary conservation of protein backbone flexibility. J Mol Evol 63:448–457PubMedCrossRefGoogle Scholar
  54. Marchler-Bauer A et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226PubMedCrossRefGoogle Scholar
  55. Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30:1072–1080PubMedPubMedCentralCrossRefGoogle Scholar
  56. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mayrose I, Graur D, Tal BN, Pupko T (2004) Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior. Mol Biol Evol 21:1781–1791PubMedCrossRefGoogle Scholar
  58. Menetrey J, Flatau G, Boquet P, Menez A, Stura EA (2008) Structural basis for the NAD-hydrolysis mechanism and the ARTT-loop plasticity of C3 exoenzymes. Protein Sci 17:878–886PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ménétrey J, Flatau G, Stura EA, Charbonnier JB, Gas F, Teulon JM, Le Du MH, Boquet P, Menez A (2002) NAD binding induces conformational changes in Rho ADP-ribosylating Clostridium botulinum C3 exoenzyme. J Biol Chem 277:30950–30957PubMedCrossRefGoogle Scholar
  60. Meyer AG, Wilke CO (2015) Geometric constraints dominate the antigenic evolution of influenza H3N2 hemagglutinin. PLoS Pathog 11:e1004940PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mizuguchi K, Deane CM, Blundell TL, Johnson MS, Overington JP (1998) JOY: protein sequence-structure representation and analysis. Bioinformatics 14:617–623PubMedCrossRefGoogle Scholar
  62. Monsellier E, Chiti F (2007) Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep 8:737–742PubMedPubMedCentralCrossRefGoogle Scholar
  63. Moriishi K, Syuto B, Yokosawa N, Oguma K, Saito M (1991) Purification and characterization of ADP-ribosyltransferases (exoenzyme C3) of Clostridium botulinum type C and D strains. J Bacteriol 73:6025–6029CrossRefGoogle Scholar
  64. Moriishi K, Syuto B, Saito M, Oguma K, Fujii N, Abe N, Naiki M (1993) Two different types of ADP-ribosyltransferase C3 from Clostridium botulinum type D lysogenized organisms. Infect Immun 61:5309–5314PubMedPubMedCentralGoogle Scholar
  65. Nagahama M, Morimitsu S, Kihara A, Akita M, Setsu K, Sakurai J (2003) Involvement of tachykinin receptors in Clostridium perfringens beta-toxin-induced plasma extravasation. Br J Pharmacol 138:23–30PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ohishi I, wasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673PubMedPubMedCentralGoogle Scholar
  67. Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34:W239–W242PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pavelka A, Chovancova E, Damborsky J (2009) HotSpot Wizard: a web server for identification of Hot Spots in—protein engineering. Nucleic Acids Res 37:376–383CrossRefGoogle Scholar
  69. Pearson W (1998) Empirical statistical estimates for sequence similarity searches. J Mol Biol 276:71–84PubMedCrossRefGoogle Scholar
  70. Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838PubMedCrossRefGoogle Scholar
  71. Pond SL, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679PubMedCrossRefGoogle Scholar
  72. Prathiviraj R, Prisilla A, Chellapandi P (2015) Structure-function discrepancy in Clostridium botulinum C3 toxin for its rational prioritization as a subunit vaccine. J Biomol Struct Dyn 34(6):1317–1329PubMedCrossRefGoogle Scholar
  73. Pust S, Barth H, Sandvig K (2010) Clostridium botulinum C2 toxin is internalized by clathrin- and Rho-dependent mechanisms. Cell Microbiol 12:1809–1820PubMedCrossRefGoogle Scholar
  74. Riddle DS, Santiago JV, Bray-Hall ST, Doshi N, Grantcharova VP, Yi Q, Baker D (1997) Functional rapidly folding proteins from simplified amino acid sequences. Nat Struct Biol 4:805–809PubMedCrossRefGoogle Scholar
  75. Sandler I, Abu-Qarn M, Aharoni A (2013) Protein co-evolution: how do we combine bioinformatics and experimental approaches? Mol Biosyst 9:175–181PubMedCrossRefGoogle Scholar
  76. Sarabojia K, Gromihab MM, Ponnuswamy MN (2005) Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes. Comput Biol Chem 29:25–35CrossRefGoogle Scholar
  77. Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 8:705–715CrossRefGoogle Scholar
  78. Sevy AM, Meiler J (2014) Antibodies: computer-aided prediction of structure and design of function. Microbiol Spectr. doi:10.1128/microbiolspec.AID-0024-2014 PubMedGoogle Scholar
  79. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sikosek T, Chan HS (2014) Biophysics of protein evolution and evolutionary protein biophysics. J R Soc Interface. doi:10.1098/rsif.2014.0419 PubMedPubMedCentralGoogle Scholar
  81. Simon NC, Aktories K, Barbieri JT (2014) Novel bacterial ADP-ribosylating oxins: structure and function. Nat Rev Microbiol 12:599–611PubMedCrossRefGoogle Scholar
  82. Smith CA, Kortemme T (2008) Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol 380:742–756PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sterthoff C, Lang AE, Schwan C, Tauch A, Aktories K (2010) Functional characterization of an extended binding component of the actin-ADP-ribosylating C2 toxin detected in Clostridium botulinum strain (C) 2300. Infect Immun 78:1468–1474PubMedPubMedCentralCrossRefGoogle Scholar
  84. Studer RA, Dessailly BH, Orengo CA (2013) Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochemistry J 449:581–594CrossRefGoogle Scholar
  85. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  86. Takada T, Iida K, Moss J (1995) Conservation of a common motif in enzymes catalyzing ADP-ribose transfer identification of domains in mammalian transferases. J Biol Chem 270:541–544PubMedCrossRefGoogle Scholar
  87. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedPubMedCentralCrossRefGoogle Scholar
  88. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedPubMedCentralCrossRefGoogle Scholar
  89. Topchiy E, Armstrong GS, Boswell KI, Buchner GS, Kubelka J, Lehmann TE (2013) T1BT* structural study of an anti-plasmodial peptide through NMR and molecular dynamics. Malar J 12:104PubMedPubMedCentralCrossRefGoogle Scholar
  90. Travers SA, Tully DC, McCormack GP, Fares MA (2007) A study of the coevolutionary patterns operating within the env gene of the HIV-1 group M subtypes. Mol Biol Evol 24:2787–2801PubMedCrossRefGoogle Scholar
  91. Tseng YY, Liang J (2006) Automated method for predicting enzyme functional surfaces and locating key residues with accuracy and specificity. Conf Proc IEEE Eng Med Biol Soc 1:4552–4555PubMedGoogle Scholar
  92. Tsuge H, Nagahama M, Nishimura H, Hisatsune J, Sakaguchi Y, Itogawa Y, Katunuma N, Sakurai J (2003) Crystal structure and site directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J Mol Biol 325:471–483PubMedCrossRefGoogle Scholar
  93. Tsuge H, Nagahama M, Oda M, Iwamoto S, Utsunomiya H, Marquez VE, Katunuma N, Nishizawa M, Sakurai J (2008) Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin. Proc Natl Acad Sci USA 105:7399–7404PubMedPubMedCentralCrossRefGoogle Scholar
  94. Udaya Prakash NA, Jayanthi M, Sabarinathan R, Kangueane P, Mathew L, Sekar K (2010) Evolution, homology conservation, and identification of unique sequence signatures in GH19 family chitinases. J Mol Evol 70:466–478PubMedCrossRefGoogle Scholar
  95. Varughese M, Teixeira AV, Liu S, Leppla SH (1999) Identification of a receptor-binding region within domain 4 of the protective antigen component of anthrax toxin. Infect Immun 67:1860–1865PubMedPubMedCentralGoogle Scholar
  96. Vitkup D, Sander C, Church GM (2003) The amino-acid mutational spectrum of human genetic disease. Genome Biol 4:R72PubMedPubMedCentralCrossRefGoogle Scholar
  97. Wan Y, Ren X, Ren Y, Wang J, Hu Z, Xie X, Xu J (2014) As a genetic adjuvant, CTA improves the immunogenicity of DNA vaccines in an ADP-ribosyltransferase activity- and IL-6-dependent manner. Vaccine 32:2173–2180PubMedCrossRefGoogle Scholar
  98. Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245PubMedGoogle Scholar
  99. Worth CL, Gong S, Blundell TL (2009) Structural and functional constraints in the evolution of protein families. Nat Rev Mol Cell Biol 10:709–720PubMedGoogle Scholar
  100. Worth CL, Preissner R, Blundell TL (2011) SDM—a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39:W215–W222PubMedPubMedCentralCrossRefGoogle Scholar
  101. Xia Y, Levitt M (2002) Roles of mutation and recombination in the evolution of protein thermodynamics. Proc Natl Acad Sci USA 99:10382–10387PubMedPubMedCentralCrossRefGoogle Scholar
  102. Yeang CH, Haussler D (2007) Detecting coevolution in and among protein domains. PLoS Comput Biol 3:e211PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yoo D, Deregt D (2001) A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. Clin Diagn Lab Immunol 8:297–302PubMedPubMedCentralGoogle Scholar
  104. Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J (2006) Ka/Ks Calculator: Calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 4:259–263PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Molecular Systems Engineering Lab, Department of BioinformaticsSchool of Life Sciences, Bharathidasan UniversityTiruchirappalliIndia

Personalised recommendations