Journal of Molecular Evolution

, Volume 84, Issue 2–3, pp 139–143 | Cite as

Molecular Convergent Evolution of the MYBPC2 Gene Among Three High-Elevation Amphibian Species

Letter to the Editor


We report a strong pattern of molecular-level convergent/parallel evolution of the MYBPC2 gene. Three high-elevation amphibian species, Bufo gargarizans minshanicus, Nanorana pleskei, Rana kukunoris, revealed remarkable numbers of convergent and parallel amino acid substitutions. On the MYBPC2 gene tree of eleven anurans, the three distantly related species formed a strongly supported clade that was away from their respective relatives. Furthermore, we generated both model-based and empirical data-based null distributions for neutral convergent evolution. All three pairwise comparisons among the three species showed significantly more convergent and parallel substitutions than the null distributions. This study adds to the very small roster of clear cases of non-neutral molecular convergent evolution (e.g. prestin, rhodopsin). Molecular convergent evolution has significant implications in biology and detailed case studies will likely provide more insight into its genetic mechanisms.


Molecular convergence Case-study Amphibian MYBPC2 gene 

Supplementary material

239_2017_9782_MOESM1_ESM.docx (154 kb)
Supplementary material 1 (DOCX 153 KB)
239_2017_9782_MOESM2_ESM.txt (38 kb)
Supplementary material 2 (TXT 37 KB)
239_2017_9782_MOESM3_ESM.pdf (39 kb)
Supplementary material 3 (PDF 38 KB)
239_2017_9782_MOESM4_ESM.pdf (59 kb)
Supplementary material 4 (PDF 59 KB)


  1. Castoe TA, de Koning AP, Kim HM, Gu W, Noonan BP, Naylor G, Jiang ZJ, Parkinsons CL, Pollock DD (2009) Evidence for an ancient adaptive episode of convergent molecular evolution. Proc Natl Acad Sci USA 106:8986–8991CrossRefPubMedPubMedCentralGoogle Scholar
  2. Duellman WE, Trueb L (1994) Biology of amphibians. Johns Hopkins University Press, BaltimoreGoogle Scholar
  3. Fei L, Hu S, Ye C, Huang Y (2009) Fauna China, Amphibia. Science Press, BeijingGoogle Scholar
  4. Flashman E (2004) Cardiac myosin binding protein c: its role in physiology and disease. Cir Res 94:1279–1289CrossRefGoogle Scholar
  5. Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Genet 4:e1000304CrossRefPubMedPubMedCentralGoogle Scholar
  6. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. doi:10.1093/molbev/msw054 PubMedCentralGoogle Scholar
  7. Li Y, Liu Z, Shi P, Zhang J (2010) The hearing gene prestin unites echolocating bats and whales. Curr Biol 20:R55–R56CrossRefPubMedGoogle Scholar
  8. Liu Z, Qi F-Y, Zhou X, Ren H-Q, Shi P (2014) Parallel sites implicate functional convergence of the hearing gene prestin among echolocating mammals. Mol Biol Evol 31:2415–2424CrossRefPubMedGoogle Scholar
  9. Looso M, Preussner J, Sousounis K, Bruckskotten M, Michel CS, Lignelli E, Reinhardt R, Höffner S, Krüger M, Tsonis PA, Borchardt T, Braun T (2013) A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration. Genome Biol 14:1–16CrossRefGoogle Scholar
  10. Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ (2013) Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502:228–231CrossRefPubMedGoogle Scholar
  11. Pyron R, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 61:543–583CrossRefPubMedGoogle Scholar
  12. Rokas A, Carroll SB (2008) Frequent and widespread parallel evolution of protein sequences. Mol Biol Evol 25:1943–1953CrossRefPubMedGoogle Scholar
  13. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  14. Shaffer JF, Gillis TE (2010) Evolution of the regulatory control of vertebrate striated muscle: the roles of troponin I and myosin binding protein-C. Physiol Genom 42:406–419CrossRefGoogle Scholar
  15. Shen Y, Liu J, Irwin DM, Zhang YP (2010) Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera). PLoS One 5:e8838CrossRefPubMedPubMedCentralGoogle Scholar
  16. Shen Y, Liang L, Li G, Murphy RW, Zhang YP (2012) Parallel evolution of auditory genes for echolocation in bats and toothed whales. PLoS Genet 8:e1002788CrossRefPubMedPubMedCentralGoogle Scholar
  17. Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14:751–764CrossRefPubMedGoogle Scholar
  18. Sun YB, Xiong ZJ, Xiang XY, Liu SP, Zhou WW, Tu XL, Zhong L, Wang L, Wu DD, Zhang BL, Zhu CL, Yang MM, Chen HM, Li F, Zhou L, Feng SH, Huang C, Zhang GJ, Irwin D, Hillis DM, Murphy RW, Yang HM, Che J, Wang J, Zhang YP (2015) Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc Natl Acad Sci USA 112:E1257–E1262CrossRefPubMedPubMedCentralGoogle Scholar
  19. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  20. Thomas GW, Hahn MW (2015) Determining the null model for detecting adaptive convergence from genomic data: a case study using echolocating mammals. Mol Biol Evol 32:1232–1236CrossRefPubMedPubMedCentralGoogle Scholar
  21. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar
  22. Zhang J, Kumar S (1997) Detection of convergent and parallel evolution at the amino acid sequence level. Mol Biol Evol 14:527–536CrossRefPubMedGoogle Scholar
  23. Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479CrossRefPubMedGoogle Scholar
  24. Zou Z, Zhang J (2015a) No genome-wide protein sequence convergence for echolocation. Mol Biol Evol 32:1237–1241CrossRefPubMedPubMedCentralGoogle Scholar
  25. Zou Z, Zhang J (2015b) Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations? Mol Biol Evol 32:2085–2096CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
  2. 2.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  3. 3.Department of BiologyLund UniversityLundSweden

Personalised recommendations