Skip to main content

Advertisement

Log in

Modeling Microvirus Capsid Protein Evolution Utilizing Metagenomic Sequence Data

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The Microviridae are increasingly becoming recognized as one of the most globally ubiquitous and highly diverse virus families, and as such, provide an advantageous model for studying virus evolution and adaptation. Here, we utilize microvirus sequences from diverse physiochemical environments, including novel sequences from a high-temperature acidic lake, to chart the outcome of natural selection in the main structural protein of the virus. Each icosahedral microvirus virion is composed of sixty identical capsid proteins that interact along twofold, threefold and fivefold symmetry axis interfaces to encapsidate a small, circular, single-stranded DNA genome. Viable assembly of the virus is guided by scaffolding proteins, which coordinate inter-subunit contacts between the capsid proteins. Structure-based analysis indicates that amino acid sequence conservation is predominantly localized to the twofold axis interface. While preservation of this quaternary interface appears to be essential, tertiary and secondary structural features of the capsid protein are permissive to considerable sequence variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrescia NG, Bamford DH, Grimes JM, Stuart DI (2012) Structure unifies the viral universe. Annu Rev Biochem 81:795

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai N, Kornberg A (1981) Rep protein as a helicase in an active, isolatable replication fork of duplex phi X174 DNA. J Biol Chem 256:5294

    CAS  PubMed  Google Scholar 

  • Bamford DH, Burnett RM, Stuart DI (2002) Evolution of viral structure. Theor Popul Biol 61:461

    Article  PubMed  Google Scholar 

  • Brentlinger KL, Hafenstein S, Novak CR, Fane BA, Borgon R, McKenna R, Agbandje-McKenna M (2002) Microviridae, a family divided: isolation, characterization, and genome sequence of phiMH2K, a bacteriophage of the obligate intracellular parasitic bacterium Bdellovibrio bacteriovorus. J Bacteriol 184:1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryson V, Vogel HJ, University Rutgers, Rutgers University. Institute of Microbiology (1965) Evolving genes and proteins; a symposium held at the Institute of Microbiology of Rutgers, with support from the National Science Foundation. Academic Press, New York

    Google Scholar 

  • Cherwa JE, Organtini LJ, Ashley RE, Hafenstein SL, Fane BA (2011) In vitro assembly of the øX174 procapsid from external scaffolding protein oligomers and early pentameric assembly intermediates. J Mol Biol 412:387

    Article  CAS  PubMed  Google Scholar 

  • Chipman PR, Agbandje-McKenna M, Renaudin J, Baker TS, McKenna R (1998) Structural analysis of the Spiroplasma virus, SpV4: implications for evolutionary variation to obtain host diversity among the Microviridae. Structure 6:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke IN, Cutcliffe LT, Everson JS, Garner SA, Lambden PR, Pead PJ, Pickett MA, Brentlinger KL, Fane BA (2004) Chlamydiaphage Chp2, a skeleton in the phiX174 closet: scaffolding protein and procapsid identification. J Bacteriol 186:7571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas JM, Duffy S, Sanjuán R (2009) Point mutation rate of bacteriophage PhiX174. Genetics 183:747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diemer GS, Stedman KM (2012) A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol Direct 7:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokland T, McKenna R, Ilag LL, Bowman BR, Incardona NL, Fane BA, Rossmann MG (1997) Structure of a viral procapsid with molecular scaffolding. Nature 389:308

    Article  CAS  PubMed  Google Scholar 

  • Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267

    Article  CAS  PubMed  Google Scholar 

  • Fane B, Brentlinger K, Burch A, Chen M, Hafenstein S, Moore E, Novak C, Uchiyama A (2006) The microviridae. In: Calendar R, Abedon ST (eds) The Bacteriophages. Oxford University Press, New York, pp 129–145

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368

    Article  CAS  PubMed  Google Scholar 

  • Garner SA, Everson JS, Lambden PR, Fane BA, Clarke IN (2004) Isolation, molecular characterisation and genome sequence of a bacteriophage (Chp3) from Chlamydophila pecorum. Virus Genes 28:207

    Article  CAS  PubMed  Google Scholar 

  • Hopkins M, Kailasan S, Cohen A, Roux S, Tucker KP, Shevenell A, Agbandje-McKenna M, Breitbart M (2014) Diversity of environmental single-stranded DNA phages revealed by PCR amplification of the partial major capsid protein. ISME J 8:2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33

    Article  CAS  PubMed  Google Scholar 

  • Jazwinski SM, Kornberg A (1975) DNA replication in vitro starting with an intact phiX174 phage. Proc Natl Acad Sci USA 72:3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khayat R, Tang L, Larson ET, Lawrence CM, Young M, Johnson JE (2005) Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc Natl Acad Sci USA 102:18944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208

    Article  PubMed  Google Scholar 

  • Krupovic M, Forterre P (2011) Microviridae goes temperate: microvirus-related proviruses reside in the genomes of Bacteroidetes. PLoS ONE 6:e19893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labonté JM, Suttle CA (2013) Metagenomic and whole-genome analysis reveals new lineages of gokushoviruses and biogeographic separation in the sea. Front Microbiol 4:404

    Article  PubMed  PubMed Central  Google Scholar 

  • Labonté JM, Hallam SJ, Suttle CA (2015) Previously unknown evolutionary groups dominate the ssDNA gokushoviruses in oxic and anoxic waters of a coastal marine environment. Front Microbiol 6:315

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Bahar I (2012) Sequence evolution correlates with structural dynamics. Mol Biol Evol 29:2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna R, Xia D, Willingmann P, Ilag LL, Krishnaswamy S, Rossmann MG, Olson NH, Baker TS, Incardona NL (1992) Atomic structure of single-stranded DNA bacteriophage phi X174 and its functional implications. Nature 355:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna R, Ilag LL, Rossmann MG (1994) Analysis of the single-stranded DNA bacteriophage phi X174, refined at a resolution of 3.0 A. J Mol Biol 237:517

    Article  CAS  PubMed  Google Scholar 

  • McMacken R, Kornberg A (1978) A multienzyme system for priming the replication of phiX174 viral DNA. J Biol Chem 253:3313

    CAS  PubMed  Google Scholar 

  • Morais MC, Fisher M, Kanamaru S, Przybyla L, Burgner J, Fane BA, Rossmann MG (2004) Conformational switching by the scaffolding protein D directs the assembly of bacteriophage phiX174. Mol Cell 15:991

    Article  CAS  PubMed  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443

    Article  CAS  PubMed  Google Scholar 

  • Pei J, Grishin NV (2001) AL2CO: calculation of positional conservation in a protein sequence alignment. Bioinformatics 17:700

    Article  CAS  PubMed  Google Scholar 

  • Pei J, Tang M, Grishin NV (2008) PROMALS3D web server for accurate multiple protein sequence and structure alignments. Nucleic Acids Res 36:W30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen TN, Nielsen M, Lundegaard C, Lund O (2010) CPHmodels-3.0-remote homology modeling using structure-guided sequence profiles. Nucleic Acids Res 38:W576

    Article  PubMed  PubMed Central  Google Scholar 

  • Pond SL, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676

    Article  CAS  PubMed  Google Scholar 

  • Poon A, Chao L (2005) The rate of compensatory mutation in the DNA bacteriophage phiX174. Genetics 170:989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prevelige P, Fane B (2012) Building the machines: scaffolding protein functions during bacteriophage morphogenesis. Adv Exp Med Biol 726:325

    Article  CAS  PubMed  Google Scholar 

  • Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC Bioinformatics 7:382

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosario K, Dayaram A, Marinov M, Ware J, Kraberger S, Stainton D, Breitbart M, Varsani A (2012) Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta). J Gen Virol 93:2668

    Article  CAS  PubMed  Google Scholar 

  • Roux S, Enault F, Robin A, Ravet V, Personnic S, Theil S, Colombet J, Sime-Ngando T, Debroas D (2012a) Assessing the diversity and specificity of two freshwater viral communities through metagenomics. PLoS ONE 7:e33641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux S, Krupovic M, Poulet A, Debroas D, Enault F (2012b) Evolution and diversity of the Microviridae viral family through a collection of 81 new complete genomes assembled from virome reads. PLoS ONE 7:e40418

    Article  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406

    CAS  PubMed  Google Scholar 

  • Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687

    Article  CAS  PubMed  Google Scholar 

  • Siering PL, Wolfe GV, Wilson MS, Yip AN, Carey CM, Wardman CD, Shapiro RS, Stedman KM, Kyle J, Yuan T, Van Nostrand JD, He Z, Zhou J (2013) Microbial biogeochemistry of Boiling Springs Lake: a physically dynamic, oligotrophic, low-pH geothermal ecosystem. Geobiology 11:356

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16:1315

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker KP, Parsons R, Symonds EM, Breitbart M (2011) Diversity and distribution of single-stranded DNA phages in the North Atlantic Ocean. ISME J 5:822

    Article  CAS  PubMed  Google Scholar 

  • Wernersson R, Pedersen AG (2003) RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31:3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia JM, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 5:e16

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Two gokushovirus sequences used in this study were identified from a metagenomic survey of Boiling Springs Lake, located in Lassen Volcanic National Park, USA. Samples were acquired with a research permit from the National Park Service (LAVO-2008-SCI-0030), as part of the Boiling Springs Lake Microbial Observatory project supported by the National Science Foundation Grant MCB0702020 to K.M.S. Metagenomic sequencing of the Boiling Springs Lake phage samples (GAIR4 and GNX3R) was funded in part by the Gordon and Betty Moore Foundation through a Grant to the Broad Institute. Additional funding was provided by Portland State University. Thanks also to anonymous reviewers whose comments greatly improved the manuscript.

Funding

This study was funded by the National Science Foundation (Grant Number MCB0702020). Metagenomic sequencing of the Boiling Springs Lake phage samples (GAIR4 and GNX3R) was funded in part by the Gordon and Betty Moore Foundation through a Grant to the Broad Institute. Both G.S.D. and K.M.S were partially supported by funding from Portland State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey S. Diemer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diemer, G.S., Stedman, K.M. Modeling Microvirus Capsid Protein Evolution Utilizing Metagenomic Sequence Data. J Mol Evol 83, 38–49 (2016). https://doi.org/10.1007/s00239-016-9751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-016-9751-y

Keywords

Navigation