Skip to main content
Log in

Ligation of RNA Oligomers by the Schistosoma mansoni Hammerhead Ribozyme in Frozen Solution

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The interstitial liquid phase within frozen aqueous solutions is an environment that minimizes RNA degradation and facilitates reactions that may have relevance to the RNA World hypothesis. Previous work has shown that frozen solutions support condensation of activated nucleotides into RNA oligomers, RNA ligation by the hairpin ribozyme, and RNA synthesis by a RNA polymerase ribozyme. In the current study, we examined the activity of a hammerhead ribozyme (HHR) in frozen solution. The Schistosoma mansoni hammerhead ribozyme, which predominantly cleaves RNA, can ligate its cleaved products (P1 and P2) with yields up to ~23 % in single turnover experiments at 25 °C in the presence of Mg2+. Our studies show that this HHR ligates RNA oligomers in frozen solution in the absence of divalent cations. Citrate and other anions that exhibit strong ion-water affinity enhanced ligation. Yields up to 43 % were observed in one freeze–thaw cycle and a maximum of 60 % was obtained after several freeze–thaw cycles using wild-type P1 and P2. Truncated and mutated P1 substrates were ligated to P2 with yields of 14–24 % in one freeze–thaw cycle. A pool of P2 substrates with mixtures of all four bases at five positions were ligated with P1 in frozen solution. High-throughput sequencing indicated that 70 of the 1024 possible P2 sequences were represented in ligated products at 1000 or more read counts per million reads. The results indicate that the HHR can ligate a range of short RNA oligomers into an ensemble of diverse sequences in ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamala K, Szostak JW (2013) Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342:1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson M, Schultz EP, Martick M, Scott WG (2013) Active-site monovalent cations revealed in a 1.55-angstrom-resolution hammerhead ribozyme structure. J Mol Biol 425:3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attwater J, Wochner A, Pinheiro VB, Coulson A, Holliger P (2010) Ice as a protocellular medium for RNA replication. Nat Commun 1:76

    Article  PubMed  Google Scholar 

  • Auffinger P, Grover N, Westhof E (2011) Metal ion binding to RNA. Met Ions Life Sci 9:1

    Article  CAS  PubMed  Google Scholar 

  • Bada JL, Lazcano A (2002) Origin of life. Some like it hot, but not the first biomolecules. Science 296:1982

    Article  CAS  PubMed  Google Scholar 

  • Biondi E, Maxwell AW, Burke DH (2012) A small ribozyme with dual-site kinase activity. Nucleic Acids Res 40:7528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birikh KR, Heaton PA, Eckstein F (1997) The structure, function and application of the hammerhead ribozyme. Eur J Biochem 245:1

    Article  CAS  PubMed  Google Scholar 

  • Canny MD, Jucker FM, Kellogg E, Khvorova A, Jayasena SD, Pardi A (2004) Fast cleavage kinetics of a natural hammerhead ribozyme. J Am Chem Soc 126:10848

    Article  CAS  PubMed  Google Scholar 

  • Canny MD, Jucker FM, Pardi A (2007) Efficient ligation of the Schistosoma hammerhead ribozyme. Biochemistry 46:3826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi YI, Martick M, Lares M, Kim R, Scott WG, Kim SH (2008) Capturing hammerhead ribozyme structures in action by modulating general base catalysis. PLoS Biol 6:2060

    CAS  Google Scholar 

  • Collins KD (2006) Ion hydration: implications for cellular function, polyelectrolytes, and protein crystallization. Biophys Chem 119:271

    Article  CAS  PubMed  Google Scholar 

  • Darnell J (2011) RNA: life’s indispensable molecule. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • de la Pena M, Garcia-Robles I (2010) Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA 16:1943

    Article  PubMed  PubMed Central  Google Scholar 

  • De la Pena M, Gago S, Flores R (2003) Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J 22:5561

    Article  PubMed  PubMed Central  Google Scholar 

  • Ditzler MA, Lange MJ, Bose D, Bottoms CA, Virkler KF, Sawyer AW, Whatley AS, Spollen W, Givan SA, Burke DH (2013) High-throughput sequence analysis reveals structural diversity and improved potency among RNA inhibitors of HIV reverse transcriptase. Nucleic Acids Res 41:1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedor MJ (2009) Comparative Enzymology and Structural Biology of RNA Self-Cleavage. Annu Rev Biophys 38:271

    Article  CAS  PubMed  Google Scholar 

  • Ferris JP, Hill AR Jr, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59

    Article  CAS  PubMed  Google Scholar 

  • Franks F (2000) Water a matrix of life. Royal Society of Chemistry, Cambridge xii, 225

    Google Scholar 

  • Gao JY, Xie C, Wang YL, Xu Z, Hao HX (2012) Solubility data of trisodium citrate hydrates in aqueous solution and crystal-solution interfacial energy of the pentahydrate. Cryst Res Technol 47:397

    Article  CAS  Google Scholar 

  • Gilbert W (1986) Origin of Life—the Rna World. Nature 319:618

    Article  Google Scholar 

  • Hammann C, Luptak A, Perreault J, de la Pena M (2012) The ubiquitous hammerhead ribozyme. RNA 18:871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Burke JM (2005) Model for general acid-base catalysis by the hammerhead ribozyme: pH-activity relationships of G8 and G12 variants at the putative active site. Biochemistry 44:7864

    Article  CAS  PubMed  Google Scholar 

  • Haynes CM (2013) The CRC handbook of chemistry and physics. Libr J 94:192

    Google Scholar 

  • Hertel KJ, Herschlag D, Uhlenbeck OC (1994) A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33:3374

    Article  CAS  PubMed  Google Scholar 

  • Hertel KJ, Herschlag D, Uhlenbeck OC (1996) Specificity of hammerhead ribozyme cleavage. EMBO J 15:3751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higashi K, Terui Y, Suganami A, Tamura Y, Nishimura K, Kashiwagi K, Igarashi K (2008) Selective structural change by spermidine in the bulged-out region of double-stranded RNA and its effect on RNA function. J Biol Chem 283:32989

    Article  CAS  PubMed  Google Scholar 

  • Hsiao C, Chou IC, Okafor CD, Bowman JC, O’Neill EB, Athavale SS, Petrov AS, Hud NV, Wartell RM, Harvey SC, Williams LD (2013) RNA with iron(II) as a cofactor catalyses electron transfer. Nat Chem 5:525

    Article  CAS  PubMed  Google Scholar 

  • Hutchins CJ, Rathjen PD, Forster AC, Symons RH (1986) Self-cleavage of plus and minus Rna transcripts of avocado sunblotch viroid. Nucleic Acids Res 14:3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319

    Article  CAS  PubMed  Google Scholar 

  • Joyce GF (1989) RNA evolution and the origins of life. Nature 338:217

    Article  CAS  PubMed  Google Scholar 

  • Kanavarioti A, Monnard PA, Deamer DW (2001) Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology 1:271

    Article  CAS  PubMed  Google Scholar 

  • Kazakov SA, Balatskaya SV, Johnston BH (1998) Freezing-induced self-ligation of the hairpin ribozyme: cationic effects. Struct Motion Interact Expr Biol Macromol 2:155

    CAS  Google Scholar 

  • Kazakov SA, Balatskaya SV, Johnston BH (2006) Ligation of the hairpin ribozyme in cis induced by freezing and dehydration. Rna 12:446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khvorova A, Lescoute A, Westhof E, Jayasena SD (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10:708

    Article  CAS  PubMed  Google Scholar 

  • Kupakuwana GV, Crill JE 2nd, McPike MP, Borer PN (2011) Acyclic identification of aptamers for human alpha-thrombin using over-represented libraries and deep sequencing. PLoS One 6:e19395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert D, Draper DE (2007) Effects of osmolytes on RNA secondary and tertiary structure stabilities and RNA-Mg2+ interactions. J Mol Biol 370:993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci USA 95:7933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YF, Breaker RR (1999) Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2 ‘-hydroxyl group. J Am Chem Soc 121:5364

    Article  CAS  Google Scholar 

  • Murray JB, Seyhan AA, Walter NG, Burke JM, Scott WG (1998) The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem Biol 5:587

    Article  CAS  PubMed  Google Scholar 

  • Mutschler H, Holliger P (2014) Non-canonical 3′-5′ extension of RNA with prebiotically plausible ribonucleoside 2′,3′-cyclic phosphates. J Am Chem Soc 136:5193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutschler H, Wochner A, Holliger P (2015) Freeze-thaw cycles as drivers of complex ribozyme assembly. Nat Chem 7:502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rear JL, Wang SL, Feig AL, Beigelman L, Uhlenbeck OC, Herschlag D (2001) Comparison of the hammerhead cleavage reactions stimulated by monovalent and divalent cations. Rna 7:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Pace NR (1991) Origin of life–facing up to the physical setting. Cell 65:531

    Article  CAS  PubMed  Google Scholar 

  • Perreault J, Weinberg Z, Roth A, Popescu O, Chartrand P, Ferbeyre G, Breaker RR (2011) Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput Biol 7:e1002031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prody GA, Bakos JT, Buzayan JM, Schneider IR, Bruening G (1986) Autolytic processing of dimeric plant-virus satellite Rna. Science 231:1577

    Article  CAS  PubMed  Google Scholar 

  • Renz M, Lohrmann R, Orgel LE (1971) Catalysts for polymerization of adenosine cyclic 2′,3′-phosphate on a poly (U) template. Biochim Biophys Acta 240:463

    Article  CAS  PubMed  Google Scholar 

  • Roy S (2008) Cleavage and ligation studies in hairpin and hammerhead ribozymes using site specific nucleotide modifications. University of Vermont, Burlington, p 176

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Serganov A, Patel DJ (2009) Amino acid recognition and gene regulation by riboswitches. Biochim Biophys Acta Gene Regul Mech 1789:592

    Article  CAS  Google Scholar 

  • Shepotinovskaya IV, Uhlenbeck OC (2008) Catalytic diversity of extended hammerhead ribozymes. Biochemistry 47:7034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stage-Zimmermann TK, Uhlenbeck OC (1998) Hammerhead ribozyme kinetics. RNA 4:875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stage-Zimmermann TK, Uhlenbeck OC (2001) A covalent crosslink converts the hammerhead ribozyme from a ribonuclease to an RNA ligase. Nat Struct Biol 8:863

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Li JM, Wartell RM (2007) Conversion of stable RNA hairpin to a metastable dimer in frozen solution. RNA 13:2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokumoto Y, Saigo K (1992) RNA-RNA and RNA-DNA ligation with the sTobRV(+) hammerhead ribozyme. Nucleic Acids Symp Ser 27:21

    CAS  PubMed  Google Scholar 

  • Trinks H, Schroder W, Biebricher CK (2005) Ice and the origin of life. Orig Life Evol Biosph 35:429

    Article  CAS  PubMed  Google Scholar 

  • Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci USA 107:4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlenbeck OC (1987) A small catalytic oligoribonucleotide. Nature 328:596

    Article  CAS  PubMed  Google Scholar 

  • Vlassov AV, Johnston BH, Landweber LF, Kazakov SA (2004) Ligation activity of fragmented ribozymes in frozen solution: implications for the RNA world. Nucleic Acids Res 32:2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlassov AV, Kazakov SA, Johnston BH, Landweber LF (2005) The RNA world on Ice: a new scenario for the emergence of RNA information. J Mol Evol 61:264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rachel Hutto for assistance with ligation experiments and Prof. Klemens Hertel for advice on the carbodiimide reaction. We gratefully acknowledge support during the course of this study from the NASA Astrobiology Institute, and a Dept. of Education GAANN Fellowship awarded to L. Lie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger M. Wartell.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lie, L., Biliya, S., Vannberg, F. et al. Ligation of RNA Oligomers by the Schistosoma mansoni Hammerhead Ribozyme in Frozen Solution. J Mol Evol 82, 81–92 (2016). https://doi.org/10.1007/s00239-016-9729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-016-9729-9

Keywords

Navigation