Skip to main content
Log in

Evolution of Nine Microsatellite Loci in the Fungus Fusarium oxysporum

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The evolution of nine microsatellites and one minisatellite was investigated in the fungus Fusarium oxysporum and sister taxa Fusarium redolens and Fusarium verticillioides. Compared to other organisms, fungi have been reported to contain fewer and less polymorphic microsatellites. Mutational patterns over evolutionary time were studied for these ten loci by mapping changes in core repeat numbers onto a phylogeny based on the sequence of the conserved translation elongation factor 1-α gene. The patterns of microsatellite formation, expansion, and interruption by base substitutions were followed across the phylogeny, showing that these loci are evolving in a manner similar to that of microsatellites in other eukaryotes. Most mutations could be fit to a stepwise mutation model, but a few appear to have involved multiple repeat units. No evidence of gene conversion was seen at the minisatellite locus, which may also be mutating by replication slippage. Some homoplastic numbers of repeat units were observed for these loci, and polymorphisms in the regions flanking the microsatellites may provide better genetic markers for population genetics studies of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ananda G, Hile SE, Breski A, Wang Y, Kelkar Y, Makova KD, Eckert KA (2014) Microsatellite interruptions stabilize primate genomes and exist as population-specific single nucleotide polymorphisms within individual human genomes. PLoS Genet 10:e1004498

    Article  PubMed  PubMed Central  Google Scholar 

  • Baayen RP, O’Donnell K, Breeuwsma S, Geiser DM, Waalwijk C (2001) Molecular relationships of fungi within the Fusarium redolens-F. hostae clade. Phytopathology 91:1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Bally P, Grandaubert J, Rouxel T, Balesdent MH (2010) FONZIE: an optimized pipeline for minisatellite marker discovery and primer design from large sequence data sets. BMC Res Notes 3:322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barthe S, Gugerli F, Barkley NA, Maggia L, Cardi C, Scotti I (2012) Always look on both sides: phylogenetic information conveyed by simple sequence repeat allele sequences. PLoS One 7:e40699

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brandström M, Ellegren H (2008) Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Res 18:881–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Brohede J, Ellegren H (1999) Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences. Proc R Soc Lond B 266:825–833

    Article  CAS  Google Scholar 

  • Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28:1040–1050

    Article  PubMed  CAS  Google Scholar 

  • Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Compar Biochem Physiol B 126:455–476

    Article  CAS  Google Scholar 

  • Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Demers JE, Garzón CD, Jiménez-Gasco MM (2014) Striking genetic similarity between races of Fusarium oxysporum f. sp. ciceris confirms a monophyletic origin and clonal evolution of the chickpea vascular wilt pathogen. Eur J Plant Path 139:303–318

    Article  Google Scholar 

  • Dettman JR, Taylor JW (2004) Mutation and evolution of microsatellite loci in Neurospora. Genetics 168:1231–1248

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dieringer D, Schlötterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 13:2242–2251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dutech C, Enjalbert J, Fournier E, Delmotte F, Barrès B, Carlier J, Tharreau D, Girand T (2007) Challenges of microsatellite isolation in fungi. Fungal Genet Biol 44:933–949

    Article  PubMed  CAS  Google Scholar 

  • Fusarium Comparative Database (2012) Broad Institute. Available from http://www.broadinstitute.org/annotation/genome/fusarium_graminearum/MultiHome.html. Accessed Jan 2012

  • Giraud T, Fortini D, Levis C, Brygoo Y (1998) The minisatellite MSB1, in the fungus Botrytis cinerea, probably mutates by slippage. Mol Biol Evol 15:1524–1531

    Article  PubMed  CAS  Google Scholar 

  • Harr B, Zangerl B, Schlötterer C (2000) Removal of microsatellite interruptions by DNA replication slippage: phylogenetic evidence from Drosophila. Mol Biol Evol 17:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Henderson ST, Petes TD (1992) Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol Cell Biol 12:2749–2757

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hey J, Wakeley J (1997) A coalescent estimator of the population recombination rate. Genetics 145:833–846

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hua-Van A, Davière JM, Kaper F, Langin T, Daboussi MJ (2000) Genome organization in Fusarium oxysporum: clusters of class II transposons. Curr Genet 37:339–347

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Karaoglu H, Lee CMY, Meyer W (2005) Survey of simple sequence repeats in completed fungal genomes. Mol Biol Evol 22:639–649

    Article  PubMed  CAS  Google Scholar 

  • Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Kayser M, Roewer L, Hedman M et al (2000) Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs. Am J Human Genet 66:1580–1588

    Article  CAS  Google Scholar 

  • Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18:30–38

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kelkar YD, Strubczewski N, Hile SE, Chiaromonte F, Eckert KA, Makova KD (2010) What is a microsatellite: a computational and experimental definition based on repeat mutational behavior at A/T and GT/AC repeats. Genome Biol Evol 2:620–635

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelkar YD, Eckert KA, Chiaromonte F, Makova KD (2011) A matter of life or death: how microsatellites emerge in and vanish from the human genome. Genome Res 21:2038–2048

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kofler R, Schlötterer C, Luschützky E, Lelley T (2008) Survey of microsatellite clustering in eight fully sequenced species sheds light on the origin of compound microsatellites. BMC Genom 9:612

    Article  Google Scholar 

  • Labbé J, Murat C, Morin E, Le Tacon F, Martin F (2011) Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers. Curr Genet 57:75–88

    Article  PubMed  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    PubMed  CAS  Google Scholar 

  • Liu M, Rodrigue N, Kolmer J (2014) Population divergence in the wheat leaf rust fungus Puccinia triticina is correlated with wheat evolution. Heredity 112:443–453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ma L-J, van der Does HC, Borkovich KA et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nielsen R (1997) A maximum likelihood approach to population samples of microsatellite alleles. Genetics 146:711–716

    PubMed  CAS  PubMed Central  Google Scholar 

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA 95:2044–2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Paun O, Hörandl E (2006) Evolution of hypervariable microsatellites in apomictic polyploid lineages of Ranunculus carpaticola: directional bias at dinucleotide loci. Genetics 174:387–398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Payseur BA, Jing P (2009) A genomewide comparison of population structure at STRPs and nearby SNPs in humans. Mol Biol Evol 26:1369–1377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Putman AI, Carbone I (2014) Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 4:4399–4428

    PubMed  PubMed Central  Google Scholar 

  • Richard G-F, Dujon B (2006) Molecular evolution of minisatellites in hemiascomycetous yeasts. Mol Biol Evol 23:189–202

    Article  PubMed  CAS  Google Scholar 

  • Richard G-F, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Santibáñez-Koref MF, Gangeswaran R, Hancock JM (2001) A relationship between lengths of microsatellites and nearby substitution rates in mammalian genomes. Mol Biol Evol 18:2119–2123

    Article  PubMed  Google Scholar 

  • Sawaya SM, Lennon D, Buschiazzo E, Gemmell N, Minin VN (2012) Measuring microsatellite conservation in mammalian evolution with a phylogenetic birth–death model. Genome Biol Evol 4:748–759

    Article  PubMed Central  Google Scholar 

  • Schoebel CN, Brodbeck S, Buehler D, Cornejo C, Gajurel J, Hartikainen H, Keller D, Leys M, Říčanová Š, Segelbacher G, Werth S, Csencsics D (2013) Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. J Evol Biol 26:600–611

    Article  PubMed  CAS  Google Scholar 

  • Skovgaard K, Rosendahl S, O’Donnell K, Nirenberg HI (2003) Fusarium commune is a new species identified by morphological and molecular phylogenetic data. Mycologia 95:630–636

    Article  PubMed  Google Scholar 

  • Sun JX, Helgason A, Masson G, Ebenesersdóttir SS, Li H, Mallick S, Gnerre S, Patterson N, Kong A, Reich D, Stefansson K (2012) A direct characterization of human mutation based on microsatellites. Nat Genet 44:1161–1165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Taylor JW, Fisher MC (2003) Fungal multilocus sequence typing—it’s not just for bacteria. Curr Opin Microbiol 6:351–356

    Article  PubMed  CAS  Google Scholar 

  • Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  PubMed  PubMed Central  Google Scholar 

  • Weetman D, Hauser L, Carvalho GR (2006) Heterogeneous evolution of microsatellites revealed by reconstruction of recent mutation history in an invasive apomictic snail, Potamopyrgus antipodarum. Genetica 127:285–293

    Article  PubMed  Google Scholar 

  • Yun S-H, Arie T, Kaneko I, Yoder OC, Turgeon BG (2000) Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet Biol 31:7–20

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Queller DC, Strassmann JE (2000a) A phylogenetic perspective on sequence evolution in microsatellite loci. J Mol Evol 50:324–338

    PubMed  CAS  Google Scholar 

  • Zhu Y, Strassmann JE, Queller DC (2000b) Insertions, substitutions, and the origin of microsatellites. Genet Res 76:227–236

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was part of the dissertation of J. E. D., which was funded by the Pennsylvania State University Graduate Fellowship program and a Microbial Functional Genomics Training Fellowship funded to Dr. Seogchan Kang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del Mar Jiménez-Gasco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demers, J.E., Jiménez-Gasco, M. Evolution of Nine Microsatellite Loci in the Fungus Fusarium oxysporum . J Mol Evol 82, 27–37 (2016). https://doi.org/10.1007/s00239-015-9725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-015-9725-5

Keywords

Navigation