Journal of Molecular Evolution

, Volume 82, Issue 1, pp 27–37 | Cite as

Evolution of Nine Microsatellite Loci in the Fungus Fusarium oxysporum

Original Article

Abstract

The evolution of nine microsatellites and one minisatellite was investigated in the fungus Fusarium oxysporum and sister taxa Fusarium redolens and Fusarium verticillioides. Compared to other organisms, fungi have been reported to contain fewer and less polymorphic microsatellites. Mutational patterns over evolutionary time were studied for these ten loci by mapping changes in core repeat numbers onto a phylogeny based on the sequence of the conserved translation elongation factor 1-α gene. The patterns of microsatellite formation, expansion, and interruption by base substitutions were followed across the phylogeny, showing that these loci are evolving in a manner similar to that of microsatellites in other eukaryotes. Most mutations could be fit to a stepwise mutation model, but a few appear to have involved multiple repeat units. No evidence of gene conversion was seen at the minisatellite locus, which may also be mutating by replication slippage. Some homoplastic numbers of repeat units were observed for these loci, and polymorphisms in the regions flanking the microsatellites may provide better genetic markers for population genetics studies of these species.

Keywords

Microsatellite Minisatellite Phylogenetics Asexual fungi Population genetics 

Supplementary material

239_2015_9725_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Ananda G, Hile SE, Breski A, Wang Y, Kelkar Y, Makova KD, Eckert KA (2014) Microsatellite interruptions stabilize primate genomes and exist as population-specific single nucleotide polymorphisms within individual human genomes. PLoS Genet 10:e1004498PubMedPubMedCentralCrossRefGoogle Scholar
  2. Baayen RP, O’Donnell K, Breeuwsma S, Geiser DM, Waalwijk C (2001) Molecular relationships of fungi within the Fusarium redolens-F. hostae clade. Phytopathology 91:1037–1044PubMedCrossRefGoogle Scholar
  3. Bally P, Grandaubert J, Rouxel T, Balesdent MH (2010) FONZIE: an optimized pipeline for minisatellite marker discovery and primer design from large sequence data sets. BMC Res Notes 3:322PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barthe S, Gugerli F, Barkley NA, Maggia L, Cardi C, Scotti I (2012) Always look on both sides: phylogenetic information conveyed by simple sequence repeat allele sequences. PLoS One 7:e40699PubMedPubMedCentralCrossRefGoogle Scholar
  5. Brandström M, Ellegren H (2008) Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Res 18:881–887PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brohede J, Ellegren H (1999) Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences. Proc R Soc Lond B 266:825–833CrossRefGoogle Scholar
  7. Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28:1040–1050PubMedCrossRefGoogle Scholar
  8. Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Compar Biochem Physiol B 126:455–476CrossRefGoogle Scholar
  9. Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403PubMedPubMedCentralCrossRefGoogle Scholar
  10. Demers JE, Garzón CD, Jiménez-Gasco MM (2014) Striking genetic similarity between races of Fusarium oxysporum f. sp. ciceris confirms a monophyletic origin and clonal evolution of the chickpea vascular wilt pathogen. Eur J Plant Path 139:303–318CrossRefGoogle Scholar
  11. Dettman JR, Taylor JW (2004) Mutation and evolution of microsatellite loci in Neurospora. Genetics 168:1231–1248PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dieringer D, Schlötterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 13:2242–2251PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dutech C, Enjalbert J, Fournier E, Delmotte F, Barrès B, Carlier J, Tharreau D, Girand T (2007) Challenges of microsatellite isolation in fungi. Fungal Genet Biol 44:933–949PubMedCrossRefGoogle Scholar
  14. Fusarium Comparative Database (2012) Broad Institute. Available from http://www.broadinstitute.org/annotation/genome/fusarium_graminearum/MultiHome.html. Accessed Jan 2012
  15. Giraud T, Fortini D, Levis C, Brygoo Y (1998) The minisatellite MSB1, in the fungus Botrytis cinerea, probably mutates by slippage. Mol Biol Evol 15:1524–1531PubMedCrossRefGoogle Scholar
  16. Harr B, Zangerl B, Schlötterer C (2000) Removal of microsatellite interruptions by DNA replication slippage: phylogenetic evidence from Drosophila. Mol Biol Evol 17:1001–1009PubMedCrossRefGoogle Scholar
  17. Henderson ST, Petes TD (1992) Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol Cell Biol 12:2749–2757PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hey J, Wakeley J (1997) A coalescent estimator of the population recombination rate. Genetics 145:833–846PubMedPubMedCentralGoogle Scholar
  19. Hua-Van A, Davière JM, Kaper F, Langin T, Daboussi MJ (2000) Genome organization in Fusarium oxysporum: clusters of class II transposons. Curr Genet 37:339–347PubMedCrossRefGoogle Scholar
  20. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  21. Karaoglu H, Lee CMY, Meyer W (2005) Survey of simple sequence repeats in completed fungal genomes. Mol Biol Evol 22:639–649PubMedCrossRefGoogle Scholar
  22. Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167PubMedCrossRefGoogle Scholar
  23. Kayser M, Roewer L, Hedman M et al (2000) Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs. Am J Human Genet 66:1580–1588CrossRefGoogle Scholar
  24. Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18:30–38PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kelkar YD, Strubczewski N, Hile SE, Chiaromonte F, Eckert KA, Makova KD (2010) What is a microsatellite: a computational and experimental definition based on repeat mutational behavior at A/T and GT/AC repeats. Genome Biol Evol 2:620–635PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kelkar YD, Eckert KA, Chiaromonte F, Makova KD (2011) A matter of life or death: how microsatellites emerge in and vanish from the human genome. Genome Res 21:2038–2048PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kofler R, Schlötterer C, Luschützky E, Lelley T (2008) Survey of microsatellite clustering in eight fully sequenced species sheds light on the origin of compound microsatellites. BMC Genom 9:612CrossRefGoogle Scholar
  28. Labbé J, Murat C, Morin E, Le Tacon F, Martin F (2011) Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers. Curr Genet 57:75–88PubMedCrossRefGoogle Scholar
  29. Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221PubMedGoogle Scholar
  30. Liu M, Rodrigue N, Kolmer J (2014) Population divergence in the wheat leaf rust fungus Puccinia triticina is correlated with wheat evolution. Heredity 112:443–453PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ma L-J, van der Does HC, Borkovich KA et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373PubMedPubMedCentralCrossRefGoogle Scholar
  32. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  33. Nielsen R (1997) A maximum likelihood approach to population samples of microsatellite alleles. Genetics 146:711–716PubMedPubMedCentralGoogle Scholar
  34. O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA 95:2044–2049PubMedPubMedCentralCrossRefGoogle Scholar
  35. Paun O, Hörandl E (2006) Evolution of hypervariable microsatellites in apomictic polyploid lineages of Ranunculus carpaticola: directional bias at dinucleotide loci. Genetics 174:387–398PubMedPubMedCentralCrossRefGoogle Scholar
  36. Payseur BA, Jing P (2009) A genomewide comparison of population structure at STRPs and nearby SNPs in humans. Mol Biol Evol 26:1369–1377PubMedPubMedCentralCrossRefGoogle Scholar
  37. Putman AI, Carbone I (2014) Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 4:4399–4428PubMedPubMedCentralGoogle Scholar
  38. Richard G-F, Dujon B (2006) Molecular evolution of minisatellites in hemiascomycetous yeasts. Mol Biol Evol 23:189–202PubMedCrossRefGoogle Scholar
  39. Richard G-F, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  41. Santibáñez-Koref MF, Gangeswaran R, Hancock JM (2001) A relationship between lengths of microsatellites and nearby substitution rates in mammalian genomes. Mol Biol Evol 18:2119–2123PubMedCrossRefGoogle Scholar
  42. Sawaya SM, Lennon D, Buschiazzo E, Gemmell N, Minin VN (2012) Measuring microsatellite conservation in mammalian evolution with a phylogenetic birth–death model. Genome Biol Evol 4:748–759PubMedCentralCrossRefGoogle Scholar
  43. Schoebel CN, Brodbeck S, Buehler D, Cornejo C, Gajurel J, Hartikainen H, Keller D, Leys M, Říčanová Š, Segelbacher G, Werth S, Csencsics D (2013) Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. J Evol Biol 26:600–611PubMedCrossRefGoogle Scholar
  44. Skovgaard K, Rosendahl S, O’Donnell K, Nirenberg HI (2003) Fusarium commune is a new species identified by morphological and molecular phylogenetic data. Mycologia 95:630–636PubMedCrossRefGoogle Scholar
  45. Sun JX, Helgason A, Masson G, Ebenesersdóttir SS, Li H, Mallick S, Gnerre S, Patterson N, Kong A, Reich D, Stefansson K (2012) A direct characterization of human mutation based on microsatellites. Nat Genet 44:1161–1165PubMedPubMedCentralCrossRefGoogle Scholar
  46. Taylor JW, Fisher MC (2003) Fungal multilocus sequence typing—it’s not just for bacteria. Curr Opin Microbiol 6:351–356PubMedCrossRefGoogle Scholar
  47. Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981PubMedPubMedCentralCrossRefGoogle Scholar
  48. Weetman D, Hauser L, Carvalho GR (2006) Heterogeneous evolution of microsatellites revealed by reconstruction of recent mutation history in an invasive apomictic snail, Potamopyrgus antipodarum. Genetica 127:285–293PubMedCrossRefGoogle Scholar
  49. Yun S-H, Arie T, Kaneko I, Yoder OC, Turgeon BG (2000) Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet Biol 31:7–20PubMedCrossRefGoogle Scholar
  50. Zhu Y, Queller DC, Strassmann JE (2000a) A phylogenetic perspective on sequence evolution in microsatellite loci. J Mol Evol 50:324–338PubMedGoogle Scholar
  51. Zhu Y, Strassmann JE, Queller DC (2000b) Insertions, substitutions, and the origin of microsatellites. Genet Res 76:227–236PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jill E. Demers
    • 1
    • 2
  • María del Mar Jiménez-Gasco
    • 1
  1. 1.Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.USDA-ARS Systematic Mycology and Microbiology LaboratoryBeltsvilleUSA

Personalised recommendations