Skip to main content

Effect of Aptamer Binding on the Electron-Transfer Properties of Redox Cofactors

Abstract

In vitro selection or SELEX has allowed for the identification of functional nucleic acids (FNAs) that can potentially mimic and replace protein enzymes. These FNAs likely interact with cofactors, just like enzymes bind cofactors in their active sites. Investigating how FNA binding affects cofactor properties is important for understanding how an active site is formed and for developing useful enzyme mimics. Oxidoreductase enzymes contain cofactors in their active sites that allow the enzymes to do redox chemistry. In certain applications, these redox cofactors act as electron-transfer shuttles that transport electrons between the enzymes’ active sites and electrode surfaces. Three redox cofactors commonly found in oxidoreductases are flavin adenine dinucleotide, nicotinamide adenine dinucleotide (NAD+), and pyrroloquinoline quinone (PQQ). We are interested in investigating how DNA aptamers that bind these cofactors influence the cofactors’ redox abilities and if these aptamer-cofactor complexes could serve as redox catalysts. We employed cyclic voltammetry and amperometry to study the electrochemical properties of NAD+ and PQQ when bound to DNA aptamers. Our results suggest that the aptamers provide a stable environment for the cofactor to participate in redox reactions, although enhanced redox activity was not observed. This work provides a foundation for the development of new FNAs capable of redox activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arechederra MN, Addo PK, Minteer SD (2011) Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: towards the development of a rechargeable biobattery. Electrochim Acta 56:1585

    CAS  Article  Google Scholar 

  2. Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew Chem Int Ed 45:2533

    CAS  Article  Google Scholar 

  3. Baum DA, Silverman SK (2008) Deoxyribozymes: useful DNA catalysts in vitro and in vivo. Cell Mol Life Sci 65:2156

    CAS  Article  PubMed  Google Scholar 

  4. Burgstaller P, Famulok M (1994) Isolation of RNA aptamers for biological cofactors by in vitro selection. Angew Chem Int Ed 33:1084

    Article  Google Scholar 

  5. Duine JA (2001) Cofactor diversity in biological oxidations: implications and applications. Chem Rec 1:74

    CAS  Article  PubMed  Google Scholar 

  6. Durand F, Stines-Chaumeil C, Flexer V, Andre I, Mano N (2010) Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells. Biochem Biophys Res Commun 402:750

    CAS  Article  PubMed  Google Scholar 

  7. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818

    CAS  Article  PubMed  Google Scholar 

  8. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850

    CAS  Article  PubMed  Google Scholar 

  9. Emahi I, Mulvihill IM, Baum DA (2015) Pyrroloquinoline quinone maintains redox activity when bound to a DNA aptamer. RSC Adv 5:7450

    CAS  Article  Google Scholar 

  10. Goran J, Favela C, Rust I, Stevenson K (2014) Enhanced electrochemical oxidation of NADH at carbon nanotube electrodes using methylene green: is polymerization necessary? J Electrochem Soc 161:H3042

    Article  Google Scholar 

  11. Han H, Tachikawa H (2005) Electrochemical determination of thiols at single-wall carbon nanotubes and PQQ modified electrodes. Front Biosci 10:931

    CAS  Article  PubMed  Google Scholar 

  12. Hao YuE, Scott K (2010) Enzymatic biofuel cells—fabrication of enzyme electrodes. Energies 3:23

    Article  Google Scholar 

  13. Heyduk T, Lee JC (1990) Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction. Proc Natl Acad Sci USA 87:1744

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  14. Huizenga DE, Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656

    CAS  Article  PubMed  Google Scholar 

  15. Itoh S, Kato N, Mure M, Ohshiro Y (1987) Kinetic studies on the oxidation of thiols by coenzyme PQQ. Bull Chem Soc Jpn 60:420

    Article  Google Scholar 

  16. Itoh S, Kinugawa M, Mita N, Ohshiro Y (1989) Efficient NAD+-regeneration system with heteroaromatic o-quinones and molecular oxygen. J Chem Soc Chem Commun (11):694

  17. Kanninen P, Ruiz V, Kallio T, Anoshkin IV, Kauppinen EI, Kontturi K (2010) Simple immobilization of pyrroloquinoline quinone on few-walled carbon nanotubes. Electrochem Commun 12:1257

    CAS  Article  Google Scholar 

  18. Karyakin AA, Ivanova YN, Karyakina EE (2003) Equilibrium (NAD+/NADH) potential on poly(neutral red) modified electrode. Electrochem Commun 5:677

    CAS  Article  Google Scholar 

  19. Katz E, Schlereth DD, Schmidt H-L (1994) Electrochemical study of pyrroloquinoline quinone covalently immobilized as a monolayer onto a cystamine-modified gold electrode. J Electroanal Chem 367:59

    CAS  Article  Google Scholar 

  20. Kim J, Jia H, Wang P (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296

    CAS  Article  PubMed  Google Scholar 

  21. Korang J, Emahi I, Grither WR, Baumann SM, Baum DA, McCulla RD (2013) Photoinduced DNA cleavage by atomic oxygen precursors in aqueous solutions. RSC Adv 3:12390

    CAS  Article  Google Scholar 

  22. Ksenzhek OS, Petrova SA (1983) Electrochemical properties of flavins in aqueous solutions. Bioelectrochem Bioener 11:105

    CAS  Article  Google Scholar 

  23. Lauhon CT, Szostak JW (1995) RNA aptamers that bind flavin and nicotinamide redox cofactors. J Am Chem Soc 117:1246

    CAS  Article  PubMed  Google Scholar 

  24. Ohshiro Y, Itoh S (1989) The chemistry and biomimetics of PQQ. In: Jongejan JA, Duine JA (eds) PQQ and quinoproteins. Springer, Dordrecht, pp 195–204

    Chapter  Google Scholar 

  25. Rasmussen M, Abdellaoui S, Minteer SD (2015) Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron. doi:10.1016/j.bios.2015.06.029

    PubMed  Google Scholar 

  26. Rojas AM, Gonzalez PA, Antipov E, Klibanov AM (2007) Specificity of a DNA-based (DNAzyme) peroxidative biocatalyst. Biotechnol Lett 29:227

    CAS  Article  PubMed  Google Scholar 

  27. Sun G, Zhou J, Yu F, Zhang Y, Pang J, Zheng L (2012) Electrochemical capacitive properties of CNT fibers spun from vertically aligned CNT arrays. J Solid State Electrochem 16:1775

    CAS  Article  Google Scholar 

  28. Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 5:505

    CAS  Article  PubMed  Google Scholar 

  29. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505

    CAS  Article  PubMed  Google Scholar 

  30. van Kleef MG, Jongejan J, Duine J (1989) Factors relevant in the reaction of PQQ with amino acids. In: Jongejan JA, Duine JA (eds) PQQ and quinoproteins. Springer, Dordrecht, pp 217–226

    Chapter  Google Scholar 

  31. Willner I, Arad G, Katz E (1998) A biofuel cell based on pyrroloquinoline quinone and microperoxidase-1 monolayer-functionalized electrodes. Bioelectroch Bioener 44:209

    CAS  Article  Google Scholar 

  32. Wilson C, Szostak JW (1998) Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem Biol 5:609

    CAS  Article  PubMed  Google Scholar 

  33. Zhao T (2009) Micro fuel cells: principles and applications. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Tomasz Heyduk for assistance with the fluorescence anisotropy studies. The authors also thank members of the Baum Lab for technical assistance, especially Praveen Bagavandoss and Lucy Freitag who worked in the lab as part of the Students and Teachers as Research Scientists (STARS) program administered by the University of Missouri – St. Louis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dana A. Baum.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 525 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emahi, I., Gruenke, P.R. & Baum, D.A. Effect of Aptamer Binding on the Electron-Transfer Properties of Redox Cofactors. J Mol Evol 81, 186–193 (2015). https://doi.org/10.1007/s00239-015-9707-7

Download citation

Keywords

  • Aptamers
  • Oxidoreductases
  • PQQ
  • NAD+