Skip to main content
Log in

Exploring the Ancestral Mechanisms of Regulation of Horizontally Acquired Nitrogenases

  • Letter to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The vast majority of Pseudomonas species are unable to fix atmospheric nitrogen. Although several studies have demonstrated that some strains belonging to the genus Pseudomonas sensu stricto do have the ability to fix nitrogen by the expression of horizontally acquired nitrogenase, little is known about the mechanisms of nitrogenase adaptation to the new bacterial host. Recently, we transferred the nitrogen fixation island from Pseudomonas stutzeri A1501 to the non-nitrogen-fixing bacterium Pseudomonas protegens Pf-5, and interestingly, the resulting recombinant strain Pf-5 X940 showed an uncommon phenotype of constitutive nitrogenase activity. Here, we integrated evolutionary and functional approaches to elucidate this unusual phenotype. Phylogenetic analysis showed that polyhydroxybutyrate (PHB) biosynthesis genes from natural nitrogen-fixing Pseudomonas strains have been acquired by horizontal transfer. Contrary to Pf-5 X940, its derived PHB-producing strain Pf-5 X940-PHB exhibited the inhibition of nitrogenase activity under nitrogen-excess conditions, and displayed the typical switch-on phenotype observed in natural nitrogen-fixing strains after nitrogen deficiency. This indicates a competition between PHB production and nitrogen fixation. Therefore, we propose that horizontal transfer of PHB biosynthesis genes could be an ancestral mechanism of regulation of horizontally acquired nitrogenases in the genus Pseudomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Althabegoiti MJ, Ormeno-Orrillo E, Lozano L, Torres Tejerizo G, Rogel MA, Mora J, Martinez-Romero E (2014) Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia. BMC Microbiol 14:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Ayub ND, Pettinari MJ, Ruiz JA, Lopez NI (2004) A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance. Curr Microbiol 49:170

    Article  CAS  PubMed  Google Scholar 

  • Ayub ND, Julia Pettinari M, Mendez BS, Lopez NI (2006) Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14-3 is due to a defective beta-ketothiolase gene. FEMS Microbiol Lett 264:125

    Article  CAS  PubMed  Google Scholar 

  • Ayub ND, Pettinari MJ, Mendez BS, Lopez NI (2007) The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid 58:240

    Article  CAS  PubMed  Google Scholar 

  • Ayub ND, Tribelli PM, Lopez NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13:59

    Article  CAS  PubMed  Google Scholar 

  • Bali A, Blanco G, Hill S, Kennedy C (1992) Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Appl Environ Microbiol 58:1711

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248

    Article  CAS  PubMed  Google Scholar 

  • Brewin B, Woodley P, Drummond M (1999) The basis of ammonium release in nifL mutants of Azotobacter vinelandii. J Bacteriol 181:7356

    PubMed Central  CAS  PubMed  Google Scholar 

  • Catone MV, Ruiz JA, Castellanos M, Segura D, Espin G, Lopez NI (2014) High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes. PLoS ONE 9:e98873

    Article  PubMed Central  PubMed  Google Scholar 

  • Cevallos MA, Encarnacion S, Leija A, Mora Y, Mora J (1996) Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate. J Bacteriol 178:1646

    PubMed Central  CAS  PubMed  Google Scholar 

  • Desnoues N, Lin M, Guo X, Ma L, Carreno-Lopez R, Elmerich C (2003) Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149:2251

    Article  CAS  PubMed  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Puhler A (2001) The complete sequence of the 1683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci USA 98:9889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fox AR, Soto G, Mozzicafreddo M, Garcia AN, Cuccioloni M, Angeletti M, Salerno JC, Ayub ND (2014) Understanding the function of bacterial and eukaryotic thiolases II by integrating evolutionary and functional approaches. Gene 533:5

    Article  CAS  PubMed  Google Scholar 

  • Galimand M, Perroud B, Delorme F, Paquelin A, Vieille C, Bozouklian H, Elmerich C (1989) Identification of DNA regions homologous to nitrogen fixation genes nifE, nifUS and fixABC in Azospirillum brasilense Sp7. J Gen Microbiol 135:1047

    CAS  PubMed  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889

    Article  CAS  PubMed  Google Scholar 

  • Geddes BA, Ryu MH, Mus F, Garcia Costas A, Peters JW, Voigt CA, Poole P (2015) Use of plant colonizing bacteria as chassis for transfer of N-fixation to cereals. Curr Opin Biotechnol 32:216

    Article  CAS  PubMed  Google Scholar 

  • Kechris KJ, Lin JC, Bickel PJ, Glazer AN (2006) Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study. Proc Natl Acad Sci USA 103:9584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kessler B, Palleroni NJ (2000) Taxonomic implications of synthesis of poly-beta-hydroxybutyrate and other poly-beta-hydroxyalkanoates by aerobic pseudomonads. Int J Syst Evol Microbiol 50(Pt 2):711

    Article  CAS  PubMed  Google Scholar 

  • Michener JK, Camargo Neves AA, Vuilleumier S, Bringel F, Marx CJ (2014a) Effective use of a horizontally-transferred pathway for dichloromethane catabolism requires post-transfer refinement. Elife 3:e04279

    Article  Google Scholar 

  • Michener JK, Vuilleumier S, Bringel F, Marx CJ (2014b) Phylogeny poorly predicts the utility of a challenging horizontally transferred gene in Methylobacterium strains. J Bacteriol 196:2101

    Article  PubMed Central  PubMed  Google Scholar 

  • Palleroni NJ (2003) Prokaryote taxonomy of the 20th century and the impact of studies on the genus Pseudomonas: a personal view. Microbiology 149:1

    Article  CAS  PubMed  Google Scholar 

  • Peralta H, Mora Y, Salazar E, Encarnacion S, Palacios R, Mora J (2004) Engineering the nifH promoter region and abolishing poly-beta-hydroxybutyrate accumulation in Rhizobium etli enhance nitrogen fixation in symbiosis with Phaseolus vulgaris. Appl Environ Microbiol 70:3272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peters JW, Szilagyi RK (2006) Exploring new frontiers of nitrogenase structure and mechanism. Curr Opin Chem Biol 10:101

    Article  CAS  PubMed  Google Scholar 

  • Rediers H, Vanderleyden J, De Mot R (2004) Azotobacter vinelandii: a pseudomonas in disguise? Microbiology 150:1117

    Article  CAS  PubMed  Google Scholar 

  • Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • San Millan A, Toll-Riera M, Qi Q, MacLean RC (2015) Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nat Commun 6:6845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Diaz-Paleo A, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS ONE 8:e63666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soto G, Stritzler M, Lisi C, Alleva K, Pagano ME, Ardila F, Mozzicafreddo M, Cuccioloni M, Angeletti M, Ayub ND (2011) Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. J Exp Bot 62:5699

    Article  CAS  PubMed  Google Scholar 

  • Soto G, Setten L, Lisi C, Maurelis C, Mozzicafreddo M, Cuccioloni M, Angeletti M, Ayub ND (2012) Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress. Extremophiles 16:455

    Article  CAS  PubMed  Google Scholar 

  • Soto G, Fox AR, Ayub ND (2013) Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes. J Mol Evol 77:3

    Article  CAS  PubMed  Google Scholar 

  • Van Dommelen A, Keijers V, Wollebrants A, Vanderleyden J (2003) Phenotypic changes resulting from distinct point mutations in the Azospirillum brasilense glnA gene, encoding glutamine synthetase. Appl Environ Microbiol 69:5699

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA 105:7564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang T, Yan Y, He S, Ping S, Alam KM, Han Y, Liu X, Lu W, Zhang W, Chen M, Xiang W, Wang X, Lin M (2012) Involvement of the ammonium transporter AmtB in nitrogenase regulation and ammonium excretion in Pseudomonas stutzeri A1501. Res Microbiol 163:332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants PICT 2011-1325, PICT-2014-1397, and PICT-2014-3659 to N.D.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Daniel Ayub.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascuan, C., Fox, A.R., Soto, G. et al. Exploring the Ancestral Mechanisms of Regulation of Horizontally Acquired Nitrogenases. J Mol Evol 81, 84–89 (2015). https://doi.org/10.1007/s00239-015-9698-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-015-9698-4

Keywords

Navigation