Journal of Molecular Evolution

, Volume 81, Issue 1–2, pp 34–53 | Cite as

Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes

Original Article

Abstract

The evolution of life from the simplest, original form to complex, intelligent animal life occurred through a number of key innovations. Here we present a new tool to analyze these key innovations by proposing that the process of evolutionary innovation may follow one of three underlying processes, namely a Random Walk, a Critical Path, or a Many Paths process, and in some instances may also constitute a “Pull-up the Ladder” event. Our analysis is based on the occurrence of function in modern biology, rather than specific structure or mechanism. A function in modern biology may be classified in this way either on the basis of its evolution or the basis of its modern mechanism. Characterizing key innovations in this way helps identify the likelihood that an innovation could arise. In this paper, we describe the classification, and methods to classify functional features of modern organisms into these three classes based on the analysis of how a function is implemented in modern biology. We present the application of our categorization to the evolution of eukaryotic gene control. We use this approach to support the argument that there are few, and possibly no basic chemical differences between the functional constituents of the machinery of gene control between eukaryotes, bacteria and archaea. This suggests that the difference between eukaryotes and prokaryotes that allows the former to develop the complex genetic architecture seen in animals and plants is something other than their chemistry. We tentatively identify the difference as a difference in control logic, that prokaryotic genes are by default ‘on’ and eukaryotic genes are by default ‘off.’ The Many Paths evolutionary process suggests that, from a ‘default off’ starting point, the evolution of the genetic complexity of higher eukaryotes is a high probability event.

Keywords

Gene control Cellular evolution Innovation Transition Complexity Cell function 

References

  1. Aittaleb M, Rashid R, Chen Q, Palmer JR, Daniels CJ, Li H (2003) Structure and function of archaeal box C/D sRNP core proteins. Nat Struct Biol 10:256–263PubMedGoogle Scholar
  2. Albers S-V et al (2006) Production of recombinant and tagged proteins in the hyperthermophilic archaeon sulfolobus solfataricus. Appl Environ Microbiol 72:102–111. doi:10.1128/aem.72.1.102-111.2006 PubMedCentralPubMedGoogle Scholar
  3. Allers T (2010) Overexpression and purification of halophilic proteins in Haloferax volcanii. Bioeng Bugs 1:288–290PubMedCentralPubMedGoogle Scholar
  4. Allers T, Barak S, Liddlell S, Wardell K, Mevarech M (2010) Improved strains and plasmid vectors for conditional overexpression of his-tagged proteins in Haloferax volcanii. Appl Environ Microbiol 76:1759–1769PubMedCentralPubMedGoogle Scholar
  5. Aravalli RN, Garrett RA (1997) Development of a simvastatin selection marker for a hyperthermophilic acidophile, sulfolobus islandicus. Extremophiles 1:183–191PubMedGoogle Scholar
  6. Archibald JD (2011) Extinction and radiation: how the fall of the dinosaurs led to the rise of the mammals. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  7. Argos P et al (1986) The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5:433–440PubMedCentralPubMedGoogle Scholar
  8. Bachellerie J-P, Cavaillé J, Hüttenhofer A (2002) The expanding snoRNA world. Biochimie 84:775–790. doi:10.1016/S0300-9084(02)01402-5 PubMedGoogle Scholar
  9. Bains W (1982) The structure of cloned histone genes from Xenopus borealis. University of Warwick, pp 223–238. http://wrap.warwick.ac.uk/67748
  10. Bains W (2000) Statistical mechanic prediction of non-Gompertzian ageing in extremely aged populations. Mech Aging Dev 112:89–97PubMedGoogle Scholar
  11. Bains W (2004) Paradoxes of non-trivial gene networks: how cancer-causing mutations can appear to be cancer-protective. Rejuvenation Res 7:199–210PubMedGoogle Scholar
  12. Baliga NS, Goo YA, Ng WV, Hood L, Daniels CJ, DasSarma S (2000) Is gene expression in Halobacterium NRC-1 regulated by multiple TBP and TFB transcription factors? Mol Microbiol 36:1184–1185. doi:10.1046/j.1365-2958.2000.01916.x PubMedGoogle Scholar
  13. Bartlett MS, Thomm M, Geiduschek EP (2000) The orientation of DNA in an archaeal transcription initiation complex. Nat Struct Mol Biol 7:782–785Google Scholar
  14. Battesti A, Gottesman S (2013) Roles of adaptor proteins in regulation of bacterial proteolysis. Curr Opin Microbiol 16:140–147. doi:10.1016/j.mib.2013.01.002 PubMedCentralPubMedGoogle Scholar
  15. Baumann H, Knapp S, Lundback T, Landstein R, Hard T (1994) Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus. Nat Struct Biol 1:808–819PubMedGoogle Scholar
  16. Belew AT et al (2014) Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 512:265–269. doi:10.1038/nature13429 PubMedGoogle Scholar
  17. Bell SD, Jackson SP (2001) Mechanism and regulation of transcription in archaea. Curr Opin Microbiol 4:208–213. doi:10.1016/S1369-5274(00)00190-9 PubMedGoogle Scholar
  18. Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Annu Rev Genet 38:771–791. doi:10.1146/annurev.genet.38.072902.094318 PubMedGoogle Scholar
  19. Bi S, Wang Y, Guan J, Sheng X, Meng J (2014) Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature. doi:10.1038/nature13718 Google Scholar
  20. Bini E, Blum P (2001) Archaeal catabolite repression: a gene regulatory paradigm. In: Laskin AI, Bennett JW, Gadd GM (eds) Advances in applied microbiology, vol 50. Academic Press, San Diego, pp 339–362Google Scholar
  21. Blackburn DG, Flemming AF (2012) Invasive implantation and intimate placental associations in a placentotrophic african lizard, Trachylepis ivensi (scincidae). J Morphol 273:137–159. doi:10.1002/jmor.11011 PubMedGoogle Scholar
  22. Blackstone NW (2013) Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation. Philos Trans R Soc B. doi:10.1098/rstb.2012.0266 Google Scholar
  23. Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97PubMedGoogle Scholar
  24. Bouligand Y, Norris V (2001) Chromosome separation and segregation in dinoflagellates and bacteria may depend on liquid crystalline states. Biochimie 83:187–192. doi:10.1016/S0300-9084(00)01211-6 PubMedGoogle Scholar
  25. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20:1123–1136. doi:10.1101/gad.381706 PubMedCentralPubMedGoogle Scholar
  26. Braglia P, Percudani R, Dieci G (2005) Sequence context effects on oligo (dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 280:19551–19562. doi:10.1074/jbc.M412238200 PubMedGoogle Scholar
  27. Braun RE (2001) Packaging paternal chromosomes with protamine. Nat Genet 28:10–12PubMedGoogle Scholar
  28. Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4:a003566PubMedCentralPubMedGoogle Scholar
  29. Brierley I, Digard P, Inglis SC (1989) Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537–547. doi:10.1016/0092-8674(89)90124-4 PubMedGoogle Scholar
  30. Brown JR, Doolittle WF (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61:456–502PubMedCentralPubMedGoogle Scholar
  31. Buhler M, Moazed D (2007) Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol 14:1041–1048PubMedGoogle Scholar
  32. Camblong J, Beyrouthy N, Guffanti E, Schlaepfer G, Steinmetz LM, Stutz F (2009) Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev 23:1534–1545. doi:10.1101/gad.522509 PubMedCentralPubMedGoogle Scholar
  33. Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F (2007) Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131:706–717. doi:10.1016/j.cell.2007.09.014 PubMedGoogle Scholar
  34. Cao X, Aufsatz W, Zilberman D, Mette MF, Huang MS, Matzke M, Jacobsen SE (2003) Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol 13:2212–2217. doi:10.1016/j.cub.2003.11.052 PubMedGoogle Scholar
  35. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. doi:10.1038/nature13802 PubMedCentralPubMedGoogle Scholar
  36. Catling DC, Glein CR, Zahnle KJ, McCay CP (2005) Why O2 is required by complex life on habitable planets and the concept of planetary “Oxygenation Time”. Astrobiology 5:415–438PubMedGoogle Scholar
  37. Cavalier-Smith T (2010) Deep phylogeny, ancestral groups and the four ages of life. Philos Trans R Soc B 365:111–132. doi:10.1098/rstb.2009.0161 Google Scholar
  38. Cech Thomas R, Steitz Joan A (2014) The noncoding RNA revolution: trashing old rules to forge new ones. Cell 157:77–94. doi:10.1016/j.cell.2014.03.008 PubMedGoogle Scholar
  39. Chalker DL, Yao M-C (2011) DNA elimination in ciliates: transposon domestication and genome surveillance. Annu Rev Genet 45:227–246. doi:10.1146/annurev-genet-110410-132432 PubMedGoogle Scholar
  40. Champoux JJ (2001) DNA topoisomerases: structure function, and mechanism. Annu Rev Biochem 70:369–413. doi:10.1146/annurev.biochem.70.1.369 PubMedGoogle Scholar
  41. Chan SW-L, Ziberman D, Xie Z, Johansen LK, Carrington JC, Jacobsen SE (2004) RNA silencing genes control de novo DNA methylation. Science 303:1336PubMedGoogle Scholar
  42. Chandler M, Fayet O (1993) Translational frameshifting in the control of transposition in bacteria. Mol Microbiol 7:497–503. doi:10.1111/j.1365-2958.1993.tb01140.x PubMedGoogle Scholar
  43. Chang C-H, Luse DS (1997) The H3/H4 tetramer blocks transcript elongation by RNA polymerase II in vitro. J Biol Chem 272:23427–23434. doi:10.1074/jbc.272.37.23427 PubMedGoogle Scholar
  44. Chang Y-j et al (2011) Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21(T)). Stand Genomic Sci 5:97–111. doi:10.4056/sigs.2114901 Google Scholar
  45. Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I (1998) The transcriptional program of sporulation in budding yeast. Science 282:699–705. doi:10.1126/science.282.5389.699 PubMedGoogle Scholar
  46. Cliffe LJ, Kieft R, Southern T, Birkeland SR, Marshall M, Sweeney K, Sabatini R (2009) JBP1 and JBP2 are two distinct thymidine hydroxylases involved in J biosynthesis in genomic DNA of African trypanosomes. Nucleic Acids Res 37:1452–1462. doi:10.1093/nar/gkn1067 PubMedCentralPubMedGoogle Scholar
  47. Cobucci-Ponzano B, Rossi M, Moracci M (2005) Recoding in archaea. Mol Microbiol 55:339–348. doi:10.1111/j.1365-2958.2004.04400.x PubMedGoogle Scholar
  48. Collin SP, Knight MA, Davies WL, Potter IC, Hunt DM, Trezise AEO (2003) Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol 13:R864–R865. doi:10.1016/j.cub.2003.10.044 PubMedGoogle Scholar
  49. Contursi P, Cannio R, Prato S, Fiorentino G, Rossi M, Bartolucci S (2003) Development of a genetic system for hyperthermophilic Archaea: expression of a moderate thermophilic bacterial alcohol dehydrogenase gene in Sulfolobus solfataricus. FEMS Microbiol Lett 218:115–120PubMedGoogle Scholar
  50. Coppins RL, Hall KB, Groisman EA (2007) The intricate world of riboswitches. Curr Opin Microbiol 10:176–181. doi:10.1016/j.mib.2007.03.006 PubMedCentralPubMedGoogle Scholar
  51. Corbett KD, Berger JM (2004) Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct 33:95–118. doi:10.1146/annurev.biophys.33.110502.140357 PubMedGoogle Scholar
  52. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848. doi:10.1126/science.1162228 PubMedCentralPubMedGoogle Scholar
  53. Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A (2008) Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 34:85–96Google Scholar
  54. de Duve C (2005) Singularities. Landmarks on the pathways of life. Cambridge University Press, CambridgeGoogle Scholar
  55. de Duve C (2007) The origin of eukaryotes: a reappraisal. Nat Rev Genet 8:395–403PubMedGoogle Scholar
  56. de la Espina SMD, Alverca E, Cuadrado A, Franca S (2005) Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. Eur J Cell Biol 84:137–149. doi:10.1016/j.ejcb.2005.01.002 Google Scholar
  57. de Santa F et al (2009) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384. doi:10.1371/journal.pbio.1000384 Google Scholar
  58. de Vries R (2010) DNA condensation in bacteria: interplay between macromolecular crowding and nucleoid proteins. Biochimie 92:1715–1721. doi:10.1016/j.biochi.2010.06.024 PubMedGoogle Scholar
  59. Dinman JD (2012) Mechanisms and implications of programmed translational frameshifting. Wiley Interdiscip Rev 3:661–673. doi:10.1002/wrna.1126 Google Scholar
  60. Domené S, Bumaschny VF, de Souza FSJ, Franchini LF, Nasif S, Low MJ, Rubinstein M (2013) Enhancer turnover and conserved regulatory function in vertebrate evolution. Philos Trans R Soc B. doi:10.1098/rstb.2013.0027 Google Scholar
  61. Doolittle WF, Feng D-F, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470–477PubMedGoogle Scholar
  62. Drlica K, Rouviere-Yaniv J (1987) Histonelike proteins of bacteria. Microbiol Rev 51:301–319PubMedCentralPubMedGoogle Scholar
  63. Dumesic Phillip A et al (2013) Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 152:957–968. doi:10.1016/j.cell.2013.01.046 PubMedCentralPubMedGoogle Scholar
  64. Edgell D, Chalamcharla V, Belfort M (2011) Learning to live together: mutualism between self-splicing introns and their hosts. BMC Biol 9:22PubMedCentralPubMedGoogle Scholar
  65. Eichler J, Adams MWW (2005) Posttranslational protein modification in archaea. Microbiol Mol Biol Rev 69:393–425. doi:10.1128/mmbr.69.3.393-425.2005 PubMedCentralPubMedGoogle Scholar
  66. Fang FC, Rimsky S (2008) New insights into transcriptional regulation by H-NS. Curr Opin Microbiol 11:113–120. doi:10.1016/j.mib.2008.02.011 PubMedCentralPubMedGoogle Scholar
  67. Fernando Bazan J, Koch-Nolte F (1997) Sequence and structural links between distant adp-ribosyltransferase sfamilies. In: Haag F, Koch-Nolte F (eds) ADP-ribosylation in animal tissues, vol 419., Advances in experimental medicine and biologySpringer, NewYork, pp 99–107. doi:10.1007/978-1-4419-8632-0_12 Google Scholar
  68. FitzGerald PC, Sturgill D, Shyakhtenko A, Oliver B, Vinson C (2006) Comparative genomics of Drosophila and human core promoters. Genome Biol 7:R53PubMedCentralPubMedGoogle Scholar
  69. Frost B, Hemberg M, Lewis J, Feany MB (2014) Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci 17:357–366. doi:10.1038/nn.3639 PubMedCentralPubMedGoogle Scholar
  70. Fuerst JA (2005) Intracellular compartmentalization in Planctomycetes. Annu Rev Microbiol 59:299–328PubMedGoogle Scholar
  71. Fuerst JA, Webb RI, Garson MJ, Hardy L, Reiswig HM (1998) Membrane-bounded nucleoids in microbial symbionts of marine sponges. FEMS Microbiol Lett 166:29–34. doi:10.1111/j.1574-6968.1998.tb13179.x Google Scholar
  72. Gao Z, Lee P, Stafford JM, von Schimmelmann M, Schaefer A, Reinberg D (2014) An AUTS2-polycomb complex activates gene expression in the CNS. Nature 516:349–354. doi:10.1038/nature13921 PubMedCentralPubMedGoogle Scholar
  73. Gaspin C, Cavaillé J, Erauso G, Bachellerie J-P (2000) Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J Mol Biol 297:895–906. doi:10.1006/jmbi.2000.3593 PubMedGoogle Scholar
  74. Geiduschek EP, Ouhammouch M (2005) Archaeal transcription and its regulators. Mol Microbiol 56:1397–1407. doi:10.1111/j.1365-2958.2005.04627.x PubMedGoogle Scholar
  75. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14:699–712. doi:10.1038/nrm3679 PubMedGoogle Scholar
  76. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956PubMedGoogle Scholar
  77. Geng F, Wenzel S, Tansey WP, Tansey WP (2012) Ubiquitin and proteasomes in transcription. Ann Rev Biochem 81:177–201PubMedCentralPubMedGoogle Scholar
  78. Ghaemmaghami S et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741PubMedGoogle Scholar
  79. Gilbert W (1986) The RNA world. Nature 319:618Google Scholar
  80. Glansdorff N (2002) About the last common ancestor, the universal life-tree and lateral gene transfer: a reappraisal. Mol Microbiol 38:177–185Google Scholar
  81. Görke B, Vogel J (2008) Noncoding RNA control of the making and breaking of sugars. Genes Dev 22:2914–2925. doi:10.1101/gad.1717808 PubMedGoogle Scholar
  82. Gould SJ (1989) Wonderful life. The burgess shales and the nature of history. W. W. Norton and Co, New YorkGoogle Scholar
  83. Gourdeau H, Fournier REK (1990) Genetic analysis of mammalian cell differentiation. Annu Rev Cell Biol 6:69–94. doi:10.1146/annurev.cb.06.110190.000441 PubMedGoogle Scholar
  84. Grewal SIS, Rice JC (2004) Regulation of heterochromatin by histone methylation and small RNAs. Curr Opin Cell Biol 16:230–238. doi:10.1016/j.ceb.2004.04.002 PubMedGoogle Scholar
  85. Griese M, Lange C, Soppa J (2011) Ploidy in cyanobacteria. FEMS Microbiol Lett 323:124–131PubMedGoogle Scholar
  86. Grigg JC, Ke A (2013) Structural determinants for geometry and information decoding of tRNA by T box leader RNA. Structure 21:2025–2032PubMedGoogle Scholar
  87. Guttman M et al (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28:503–510PubMedCentralPubMedGoogle Scholar
  88. Haasa PO, Hottinger MO (2008) The diverse biological roles of mammalian PARPs, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13:3036–3082Google Scholar
  89. Hale CR et al (2009) RNA-guided RNA cleavage by a CRISPR RNA-cas protein complex. Cell 139:945–956. doi:10.1016/j.cell.2009.07.040 PubMedCentralPubMedGoogle Scholar
  90. Hallet B, Sherratt DJ (1997) Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol Rev 21:157–178. doi:10.1111/j.1574-6976.1997.tb00349.x PubMedGoogle Scholar
  91. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013 PubMedGoogle Scholar
  92. Harrison P, Kumar A, Lan N, Echols N, Snyder M, Gerstein M (2002) A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. J Mol Biol 316:409–419. doi:10.1006/jmbi.2001.5343 PubMedGoogle Scholar
  93. Helmann JD, Chamberlin MJ (1988) Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872. doi:10.1146/annurev.bi.57.070188.004203 PubMedGoogle Scholar
  94. Hendrix DA, Hong J-W, Zeitlinger J, Rokhsar DS, Levine MS (2008) Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc Natl Acad Sci USA 105:7762–7767. doi:10.1073/pnas.0802406105 PubMedCentralPubMedGoogle Scholar
  95. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc B 361:903–915. doi:10.1098/rstb.2006.1838 Google Scholar
  96. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170. doi:10.1126/science.1179555 PubMedGoogle Scholar
  97. Houseley J (2012) Form and function of eukaryotic unstable non-coding RNAs. Biochem Soc Trans 40:836–840PubMedGoogle Scholar
  98. Houseley J, Rubbi L, Grunstein M, Tollervey D, Vogelauer M (2008) A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell 32:685–695. doi:10.1016/j.molcel.2008.09.027 PubMedGoogle Scholar
  99. Houseley J, Tollervey D (2008) The nuclear RNA surveillance machinery: the link between ncRNAs and genome structure in budding yeast? Biochim Biophys Acta 1779:239–246. doi:10.1016/j.bbagrm.2007.12.008 PubMedGoogle Scholar
  100. Huarte M et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419. doi:10.1016/j.cell.2010.06.040 PubMedCentralPubMedGoogle Scholar
  101. Jacob F, Monod J (1961) On the regulation of gene activity. Cold Spring Harb Symp Quant Biol 26:193–211. doi:10.1101/sqb.1961.026.01.024 Google Scholar
  102. Jeong SW, Lang WH, Reeder RH (1995) The release element of the yeast polymerase I transcription terminator can function independently of Reb1p. Mol Cell Biol 15:5929–5936PubMedCentralPubMedGoogle Scholar
  103. Jin F et al (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503:290–294. doi:10.1038/nature12644 PubMedGoogle Scholar
  104. Jobe EM, McQuate AL, Zhao X (2012) Crosstalk among epigenetic pathways regulates neurogenesis. Front Neurosci. doi:10.3389/fnins.2012.00059 PubMedCentralPubMedGoogle Scholar
  105. Jore MM, Brouns SJJ, van der Oost J (2012) RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements. Cold Spring Harb Perspect Biol 4:a003657PubMedCentralPubMedGoogle Scholar
  106. Joshua-Tor L, Hannon GJ (2010) Ancestral roles of small RNAs: an ago-centric perspective. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a003772 Google Scholar
  107. Khalil AM et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106:11667–11672. doi:10.1073/pnas.0904715106 PubMedCentralPubMedGoogle Scholar
  108. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA Gas5 Is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:8. doi:10.1126/scisignal.2000568 Google Scholar
  109. Kireeva ML, Hancock B, Cremona GH, Walter W, Studitsky VM, Kashlev M (2005) Nature of the nucleosomal barrier to RNA polymerase II. Mol Cell 18:97–108. doi:10.1016/j.molcel.2005.02.027 PubMedGoogle Scholar
  110. Kireeva ML, Walter W, Tchernajenko V, Bondarenko V, Kashlev M, Studitsky VM (2002) Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol Cell 9:541–552. doi:10.1016/S1097-2765(02)00472-0 PubMedGoogle Scholar
  111. Kiucho T et al (2014) A single female-specific piRNa is the primary determiner of sex in the silkworm. Nature 509:633–636Google Scholar
  112. Komaki K, Ishikawa H (2000) Genomic copy number of intracellular bacterial symbionts of aphids varies in response to developmental stage and morph of their host. Insect Biochem Mol Biol 30:253–258. doi:10.1016/S0965-1748(99)00125-3 PubMedGoogle Scholar
  113. Komik Z (2005) Pax genes in eye development and evolution. Curr Opin Genet Dev 15:430–438Google Scholar
  114. Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, Wilson GG (1994) The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 22:1–10PubMedCentralPubMedGoogle Scholar
  115. Kuo C-H, Ochman H (2010) The extinction dynamics of bacterial pseudogenes. PLoS Genet 6:e1001050PubMedCentralPubMedGoogle Scholar
  116. Lafontaine DLJ, Tollervey D (1998) Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem Sci 23:383–388. doi:10.1016/S0968-0004(98)01260-2 PubMedGoogle Scholar
  117. Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35PubMedGoogle Scholar
  118. Land MF, Nilsson D-E (2012) Animal eyes, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  119. Landschulz W, Johnson P, McKnight S (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764. doi:10.1126/science.3289117 PubMedGoogle Scholar
  120. Lang BF et al (2014) Massive programmed translational jumping in mitochondria. Proc Natl Acad Sci 111:5926–5931. doi:10.1073/pnas.1322190111 PubMedCentralPubMedGoogle Scholar
  121. Leblond CS et al (2012) Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet 8:e1002521PubMedCentralPubMedGoogle Scholar
  122. Lee TI et al (2006) Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125:301–313. doi:10.1016/j.cell.2006.02.043 PubMedCentralPubMedGoogle Scholar
  123. Lettice LA et al (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12:1725–1735. doi:10.1093/hmg/ddg180 PubMedGoogle Scholar
  124. Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen F-M (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75:1083–1093. doi:10.1016/0092-8674(93)90318-K PubMedGoogle Scholar
  125. Lewis S, Gellert M (1989) The mechanism of antigen receptor gene assembly. Cell 59:585–588. doi:10.1016/0092-8674(89)90002-0 PubMedGoogle Scholar
  126. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719. doi:10.1016/j.cell.2007.01.015 PubMedGoogle Scholar
  127. Li J, Gilmour DS (2013) Distinct mechanisms of transcriptional pausing orchestrated by GAGA factor and M1BP, a novel transcription factor. EMBO J 32:1829–1841PubMedCentralPubMedGoogle Scholar
  128. Li Y, Tergaonkar V (2014) Noncanonical functions of telomerase: implications in telomerase-targeted cancer therapies. Cancer Res 74:1639–1644. doi:10.1158/0008-5472.can-13-3568 PubMedGoogle Scholar
  129. Liu X, Bushnell DA, Kornberg RD (2013) RNA polymerase II transcription: structure and mechanism. Biochim Biophys Acta 1829:2–8. doi:10.1016/j.bbagrm.2012.09.003 PubMedCentralPubMedGoogle Scholar
  130. Liu Y, Harrison PM, Kunin V, Gerstein M (2004) Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol 5:R64. doi:10.1186/gb-2004-1185-1189-r1164 PubMedCentralPubMedGoogle Scholar
  131. Livny J, Brencic A, Lory S, Waldor MK (2006) Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res 34:3484–3493. doi:10.1093/nar/gkl453 PubMedCentralPubMedGoogle Scholar
  132. Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci USA 100:776–781. doi:10.1073/pnas.0334858100 PubMedCentralPubMedGoogle Scholar
  133. Lucas S et al (2002) Construction of a shuttle vector for, and spheroplast transformation of, the hyperthermophilic archaeon Pyrococcus abyssi. Appl Environ Microbiol 68:5528–5535PubMedCentralPubMedGoogle Scholar
  134. Luijsterburg MS, White MF, Van Driel R, Dame RT (2008) The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43:1–26Google Scholar
  135. Makarova KS, Wolf YI, Mekhedov SL, Mirkin BG, Koonin EV (2005) Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res 33:4626–4638. doi:10.1093/nar/gki775 PubMedCentralPubMedGoogle Scholar
  136. Makarova KS, Wolf YI, van der Oost J, Koonin EV (2009) Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct 4:29. doi:10.1186/1745-6150-1184-1129 PubMedCentralPubMedGoogle Scholar
  137. Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136:656–668PubMedCentralPubMedGoogle Scholar
  138. Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239:15–27. doi:10.1016/S0378-1119(99)00368-6 PubMedGoogle Scholar
  139. Marsh VL, Peak-Chew SY, Bell SD (2005) Sir2 and the acetyltransferase, pat, regulate the archaeal chromatin protein, alba. J Biol Chem 280:21122–21128PubMedGoogle Scholar
  140. Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–670PubMedGoogle Scholar
  141. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849PubMedGoogle Scholar
  142. Martin W, Koonin EV (2006) Introns and the origin of nucleus–cytosol compartmentalization. Nature 440:41–45PubMedGoogle Scholar
  143. Mattick JS, Gagen MJ (2001) The evolution of controlled multitasked gene networks: the role of introns and other noncoding rnas in the development of complex organisms. Mol Biol Evol 18:1611–1630PubMedGoogle Scholar
  144. McCarty DM, Young SM, Samulski RJ (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38:819–845. doi:10.1146/annurev.genet.37.110801.143717 PubMedGoogle Scholar
  145. Meister G, Tuschi T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349PubMedGoogle Scholar
  146. Mello CC, Conte DJ (2004) Revealing the world of RNA interference. Nature 431:338–341PubMedGoogle Scholar
  147. Mendell JE, Clements KD, Choat JH, Angert ER (2008) Extreme polyploidy in a large bacterium. Proc Natl Acad Sci USA 105:6730–6734. doi:10.1073/pnas.0707522105 PubMedCentralPubMedGoogle Scholar
  148. Meng Q, Wang Y, Liu X-Q (2005) An intron-encoded protein assists RNA splicing of multiple similar introns of different bacterial genes. J Biol Chem 280:35085–35088. doi:10.1074/jbc.C500328200 PubMedGoogle Scholar
  149. Menssen A, Haupl T, Sittinger M, Delorme B, Charbord P, Ringe J (2011) Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development. BMC Genomics 12:461PubMedCentralPubMedGoogle Scholar
  150. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307PubMedGoogle Scholar
  151. Merck Millipore Inc. (2015) Expression vectors. http://www.emdmillipore.com/
  152. Messer W (2002) The bacterial replication initiator DnaA, DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev 26:355–374. doi:10.1111/j.1574-6976.2002.tb00620.x PubMedGoogle Scholar
  153. Mighell AJ, Smith NR, Robinson PA, Markham AF (2000) Vertebrate pseudogenes. FEBS Lett 468:109–114. doi:10.1016/S0014-5793(00)01199-6 PubMedGoogle Scholar
  154. Mikkelsen TS et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560PubMedCentralPubMedGoogle Scholar
  155. Miller AD (1992) Retroviral vectors. In: Muzyczka N (ed) Viral expression vectors, vol 158., Current topics in microbiology and immunologySpringer, Berlin, pp 1–24. doi:10.1007/978-3-642-75608-5_1 Google Scholar
  156. Miller G, Hahn S (2006) A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex. Nat Struct Mol Biol 13:603–610PubMedCentralPubMedGoogle Scholar
  157. Mischo HE, Proudfoot NJ (2013) Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. Biochim Biophys Acta 1829:174–185PubMedCentralPubMedGoogle Scholar
  158. Mizuguchi G, Shen X, Landry J, Wu W-H, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348. doi:10.1126/science.1090701 PubMedGoogle Scholar
  159. Moroz LL et al (2014) The ctenophore genome and the evolutionary origins of neural systems. Nature. doi:10.1038/nature13400 PubMedCentralPubMedGoogle Scholar
  160. Mossman HW (1937) Comparative morphogenesis of the fetal membranes and accessory uterine structures. Carnegie Inst Contr Embryol 26:129–246Google Scholar
  161. Müller J, Kassis JA (2006) Polycomb response elements and targeting of polycomb group proteins in Drosophila. Curr Opin Genet Dev 16:476–484. doi:10.1016/j.gde.2006.08.005 PubMedGoogle Scholar
  162. Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122. doi:10.1016/0378-1119(95)00037-7 PubMedGoogle Scholar
  163. Muse GW et al (2007) RNA polymerase is poised for activation across the genome. Nat Genet 39:1507–1511PubMedCentralPubMedGoogle Scholar
  164. Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145:178–181PubMedGoogle Scholar
  165. Narlikar L, Sakabe NJ, Blanski AA, Arimura FE, Westlund JM, Nobrega MA, Ovcharenko I (2010) Genome-wide discovery of human heart enhancers. Genome Res 20:381–392PubMedCentralPubMedGoogle Scholar
  166. Navarre WW, McClelland M, Libby SJ, Fang FC (2007) Silencing of xenogeneic DNA by H-NS—facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 21:1456–1471. doi:10.1101/gad.1543107 PubMedGoogle Scholar
  167. Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in salmonella. Science 313:236–238. doi:10.1126/science.1128794 PubMedGoogle Scholar
  168. Nechaev S, Adelman K (2011) Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation. Biochim Biophys Acta 1809:34–45PubMedCentralPubMedGoogle Scholar
  169. Nechaev S, Fargo DC, dos Santos G, Liu L, Gao Y, Adelman K (2010) Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of pol II in Drosophila. Science 327:335–338. doi:10.1126/science.1181421 PubMedCentralPubMedGoogle Scholar
  170. Nykänen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway cell 107:309–321. doi:10.1016/S0092-8674(01)00547-5 PubMedGoogle Scholar
  171. Olave IA, Peck-Peterson SI, Crabtree GR (2002) Nuclear actin and actin-related proteins in chromatin remodelling. Annu Rev Biochem 71:755–781PubMedGoogle Scholar
  172. Ørom UA et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58. doi:10.1016/j.cell.2010.09.001 PubMedCentralPubMedGoogle Scholar
  173. Pagel M, Johnstone RA (1992) Variation across Species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proc R Soc Lond Ser B 249:119–124. doi:10.1098/rspb.1992.0093 Google Scholar
  174. Pallen MJ, Lam AC, Loman NJ, McBride A (2001) An abundance of bacterial ADP-ribosyltransferases: implications for the origin of exotoxins and their human homologues. Trends Microbiol 9:302–307. doi:10.1016/S0966-842X(01)02074-1 PubMedGoogle Scholar
  175. Papenfort K, Vogel J (2010) Regulatory RNA in bacterial pathogens. Cell Host Microbe 8:116–127PubMedGoogle Scholar
  176. Peirce V, Carobbio S, Vidal-Puig A (2014) The different shades of fat. Nature 510:76–83PubMedGoogle Scholar
  177. Peng N et al (2012) A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon sulfolobus islandicus. Appl Environ Microbiol 79:5630–5637Google Scholar
  178. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533PubMedGoogle Scholar
  179. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038PubMedCentralPubMedGoogle Scholar
  180. Pollux BJA, Pires MN, Banet AI, Reznick DN (2009) Evolution of placentas in the fish family poeciliidae: an empirical study of macroevolution. Annu Rev Ecol Evol Syst 40:271–289. doi:10.1146/annurev.ecolsys.110308.120209 Google Scholar
  181. Polyzos SA, Kountouras J, Zavos C, Deretzi G (2012) Nonalcoholic fatty liver disease: multimodal treatment options for a pathogenetically multiple-hit disease. J Clin Gastroenterol 46(272–284):2. doi:10.1097/MCG.1090b1013e31824587e31824580 Google Scholar
  182. Ponting CP, Hardison RC (2011) What fraction of the human genome is functional? Genome Res 21:1769–1776PubMedCentralPubMedGoogle Scholar
  183. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641. doi:10.1016/j.cell.2009.02.006 PubMedGoogle Scholar
  184. Promega Corp. (2015) Vectors. http://www.promega.co.uk/products/vectors/
  185. Pyle AM (2012) Group II intron architecture and its implications for the development of eukaryotic splicing systems. FASEB J 26(217):213Google Scholar
  186. Rabbani MA et al (2003) Monitoring expression profiles of rice genes under cold drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767. doi:10.1104/pp.103.025742 PubMedCentralPubMedGoogle Scholar
  187. Rebollo R, Romanish MT, Mager DL (2012) Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46:21–42. doi:10.1146/annurev-genet-110711-155621 PubMedGoogle Scholar
  188. Reeve JN (2003) Archaeal chromatin and transcription. Mol Microbiol 48:587–598. doi:10.1046/j.1365-2958.2003.03439.x PubMedGoogle Scholar
  189. Reisenauer A, Kahng LS, McCollum S, Shapiro L (1999) Bacterial DNA methylation: a cell cycle regulator? J Bacteriol 181:5135–5139PubMedCentralPubMedGoogle Scholar
  190. Rhee HS, Pugh F (2012) Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483:295–301PubMedCentralPubMedGoogle Scholar
  191. Rinn JLC, Chang HY (2012) Genome regulation by long noncoding RNAs. AnnU Rev Biochem 81:145–166PubMedGoogle Scholar
  192. Rivas E, Klein RJ, Jones TA, Eddy SR (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol 11:1369–1373. doi:10.1016/S0960-9822(01)00401-8 PubMedGoogle Scholar
  193. Rivier C, Goldschmidt-Clermont M, Rochaix J-D (2001) Identification of an RNA–protein complex involved in chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. EMBO J 20:1765–1773. doi:10.1093/emboj/20.7.1765 PubMedCentralPubMedGoogle Scholar
  194. Roeben A, Kofler C, Nagy I, Nickell S, Ulrich Hartl F, Bracher A (2006) Crystal structure of an archaeal actin homolog. J Mol Biol 358:145–156. doi:10.1016/j.jmb.2006.01.096 PubMedGoogle Scholar
  195. Ross RJ, Weiner MM, Lin H (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505:353–359. doi:10.1038/nature12987 PubMedCentralPubMedGoogle Scholar
  196. Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221PubMedGoogle Scholar
  197. Ruthenburg A, Kli H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev 8:983–994Google Scholar
  198. Salas M (1991) Protein-priming of DNA replication. Annu Rev Biochem 60:39–71PubMedGoogle Scholar
  199. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi Pier P (2011) A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell 146:353–358. doi:10.1016/j.cell.2011.07.014 PubMedCentralPubMedGoogle Scholar
  200. Sandman K, Reeve JN (2005) Archaeal chromatin proteins: different structures but common function? Curr Opin Microbiol 8:656–661. doi:10.1016/j.mib.2005.10.007 PubMedGoogle Scholar
  201. Sandman K, Reevem JH (2001) Chromosome packaging by archael histones. In: Laskin AI, Bennett JW, Gadd GM (eds) Advances in applied microbiology, vol 50. Academic Press, San Diego, pp 73–100Google Scholar
  202. Santangelo TJ, Čuboňová L, Reeve JN (2008) Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Appl Environ Microbiol 74:3099–3104. doi:10.1128/aem.00305-08 PubMedCentralPubMedGoogle Scholar
  203. Sanyal A, Lajoie BR, Jain G, Dekker J (2012) The long-range interaction landscape of gene promoters. Nature 489:109–113PubMedCentralPubMedGoogle Scholar
  204. Sauer B (1994) Site-specific recombination: developments and applications. Curr Opin Biotechnol 5:521–527. doi:10.1016/0958-1669(94)90068-X PubMedGoogle Scholar
  205. Schouten M, Buijink MR, Lucassen PJ, Fitzsimons CP (2012) New neurons in aging brains: molecular control by small non-coding RNAs. Front Neurosci. doi:10.3389/fnins.2012.00025 PubMedCentralPubMedGoogle Scholar
  206. Schreier H, Robinson-Bidle KA, Romashko AM, Patel G (1999) Heterologous expression in the Archaea: transcription from Pyrococcus furiousus gdh and mlrA promoters in Haloferax volcanii. Extremophiles 3:11–19PubMedGoogle Scholar
  207. Schulze-Makuch D, Irwin LN (2008) Life in the universe: expectations and constraints, 2nd edn. Springer, BerlinGoogle Scholar
  208. Schwabe JWR, Chapman L, Finch JT, Rhodes D (1993) The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 75:567–578. doi:10.1016/0092-8674(93)90390-C PubMedGoogle Scholar
  209. Schwanhausser B et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342PubMedGoogle Scholar
  210. Schwartz DC, Hochstrasser M (2003) A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci 28:321–328. doi:10.1016/S0968-0004(03)00113-0 PubMedGoogle Scholar
  211. Schwartz YB, Kahn TG, Nix DA, Li X-Y, Bourgon R, Biggin M, Pirrotta V (2006) Genome-wide analysis of polycomb targets in Drosophila melanogaster. Nat Genet 38:700–705PubMedGoogle Scholar
  212. Sesto N, Wurtzel O, Archambaud C, Sorek R, Cossart P (2013) The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol 11:75–82PubMedGoogle Scholar
  213. Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587. doi:10.1016/j.tree.2008.06.005 PubMedCentralPubMedGoogle Scholar
  214. Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406:541–544PubMedGoogle Scholar
  215. Singh DP et al (2014) Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature 509:447–452. doi:10.1038/nature13318 PubMedGoogle Scholar
  216. Skourti-Stathaki K, Kamieniarz-Gdula K, Proudfoot NJ (2014) R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516:436–439. doi:10.1038/nature13787 PubMedCentralPubMedGoogle Scholar
  217. Smemo S et al (2014) Obesity-associated varients within FTO form long-range functional connections with IRX3. Nature 507:371–375PubMedCentralPubMedGoogle Scholar
  218. Smith JM, Szathmary E (1995) The major transitions in evolution. W H Freeman, OxfordGoogle Scholar
  219. Smits WK, Grossman AD (2010) The transcriptional regulator rok binds A+T-rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis. PLoS Genet 6:e1001207PubMedCentralPubMedGoogle Scholar
  220. Soares D, Dahlke I, Li W-T, Sandman K, Hethke C, Thomm M, Reeve JN (1998) Archaeal histone stability, DNA binding, and transcription inhibition above 90 °C. Extremophiles 2:75–81. doi:10.1007/s007920050045 PubMedGoogle Scholar
  221. Song J-J, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of argonaute and its implications for RISC slicer activity. Science 305:1434–1437. doi:10.1126/science.1102514 PubMedGoogle Scholar
  222. Soppa J (2001) Basal and regulated transcription in archaea. In: Laskin AI, Bennett JW, Gadd GM (eds) Advances in applied microbiology, vol 50. Academic Press, San Diego, pp 171–217Google Scholar
  223. Soppa J (2010) Protein Acetylation in Archaea. Bacteria Eukaryotes Archaea. doi:10.1155/2010/820681 PubMedGoogle Scholar
  224. Soppa J (2014) Polyploidy in archaea and bacteria: about desiccation resistance giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. J Mol Microbiol Biotechnol 24:409–419PubMedGoogle Scholar
  225. Spang A et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179. doi:10.1038/nature14447 PubMedGoogle Scholar
  226. Stedman KM, Schleper C, Rumpf E, Zilig W (1999) Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus: construction and testing of viral shuttle vectors. Genetics 152:1397–1405PubMedCentralPubMedGoogle Scholar
  227. Swerdlow R (2012) Alzheimer’s disease pathologic cascades: who comes first what drives what. Neurotox Res 22:182–194. doi:10.1007/s12640-011-9272-9 PubMedCentralPubMedGoogle Scholar
  228. Taher L et al (2011) Genome-wide identification of conserved regulatory function in diverged sequences. Genome Res 21:1139–1149PubMedCentralPubMedGoogle Scholar
  229. Taher L, Narlikar L, Ovcharenko I (2012) CLARE: cracking the language of regulatory elements. Bioinformatics 28:581–583. doi:10.1093/bioinformatics/btr704 PubMedCentralPubMedGoogle Scholar
  230. Tahiliani M et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. doi:10.1126/science.1170116 PubMedCentralPubMedGoogle Scholar
  231. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352. doi:10.1038/nature12986 PubMedCentralPubMedGoogle Scholar
  232. Thebault P, Boutin G, Bhat W, Rufiange A, Martens J, Nourani A (2011) Transcription regulation by the noncoding RNA SRG1 requires Spt2-dependent chromatin deposition in the wake of RNA polymerase II. Mol Cell Biol 31:1288–1300. doi:10.1128/mcb.01083-10 PubMedCentralPubMedGoogle Scholar
  233. Ulitsky I, Shkumatava A, Jan Calvin H, Sive H, Bartel David P (2011) Conserved function of lincrnas in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–1550. doi:10.1016/j.cell.2011.11.055 PubMedCentralPubMedGoogle Scholar
  234. Vaillasante A, de Pablos B, Mendez-Lago M, Abad JP (2008) Telomere maintenance in drosophila cell. Cycle 7:2134–2138Google Scholar
  235. Vaishnaw AK et al (2010) Review A status report on RNAi therapeutics. Silence 1. doi:10.1186/1758-1907X-1181-1114 Google Scholar
  236. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524. doi:10.1101/gad.1399806 PubMedGoogle Scholar
  237. Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Ann Rev Genetics 19:253–272Google Scholar
  238. Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, Shapiro L (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci 101:9257–9262PubMedCentralPubMedGoogle Scholar
  239. Vockenhuber M-P et al (2011) Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor. RNA Biol 8:468–477PubMedCentralPubMedGoogle Scholar
  240. Wang D, Rendon A, Wernisch L (2013) Transcription factor and chromatin features predict genes associated with eQTLs. Nucleic Acids Res 41:1450–1463. doi:10.1093/nar/gks1339 PubMedCentralPubMedGoogle Scholar
  241. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Cell 43:904–914Google Scholar
  242. Wang W, Li G-W, Chen C, Xie XS, Zhuang X (2011) Nucleoid-associated protein in live bacteria. Science 333:1445–1449PubMedCentralPubMedGoogle Scholar
  243. Ward WS, Coffey DS (1991) DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44:569–574. doi:10.1095/biolreprod44.4.569 PubMedGoogle Scholar
  244. Wardleworth BN, Russell RJM, Bell SD, Taylor GL, White MF (2002) Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO J 21:4654–4662. doi:10.1093/emboj/cdf465 PubMedCentralPubMedGoogle Scholar
  245. Washietl S et al (2007) Structured RNAs in the ENCODE selected regions of the human genome. Genome Res 17:852–864. doi:10.1101/gr.5650707 PubMedCentralPubMedGoogle Scholar
  246. Wassarman KM (2007) 6S RNA: a small RNA regulator of transcription. Curr Opin Microbiol 10:164–168. doi:10.1016/j.mib.2007.03.008 PubMedGoogle Scholar
  247. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628. doi:10.1016/j.cell.2009.01.043 PubMedCentralPubMedGoogle Scholar
  248. Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, Breaker RR (2010) Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 11:R31PubMedCentralPubMedGoogle Scholar
  249. Weinzierl ROJ (2013) The RNA polymerase factory and archaeal transcription. Chem Rev 113:8350–8376PubMedGoogle Scholar
  250. Weiss M (1982) Cell hybridization: a tool for the study of cell differentiation. In: Caskey CT, Robbins DC (eds) ***Somatic cell genetics, vol 50., NATO Advanced Study Institutes SeriesSpringer, New York, pp 169–182. doi:10.1007/978-1-4684-4256-4_10 Google Scholar
  251. White MF, Bell SD (2002) Holding it together: chromatin in the Archaea. Trends Genetics 18:621–626. doi:10.1016/S0168-9525(02)02808-1 Google Scholar
  252. Whitehouse I, Rando OJ, Delrow J, Tsukiyama T (2007) Chromatin remodelling at promoters suppresses antisense transcription. Nature 450:1031–1035PubMedGoogle Scholar
  253. Williams S et al (2005) CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol. doi:10.1186/1472-6750-1185-1117 PubMedCentralPubMedGoogle Scholar
  254. Williams TA, Foster PG, Cox CJ, Embley TM (2014) An archeal origin of eukaryotes supports only two primary domains of life. Nature 504:231–236Google Scholar
  255. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504PubMedCentralPubMedGoogle Scholar
  256. Wion D, Casadesus J (2006) N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Micro 4:183–192Google Scholar
  257. Wong JTY, New DC, Wong JCW, Hung VKL (2003) Histone-like proteins of the dinoflagellate crypthecodinium cohnii have homologies to bacterial DNA-binding proteins. Eukaryot Cell 2:646–650. doi:10.1128/ec.2.3.646-650.2003 PubMedCentralPubMedGoogle Scholar
  258. Wourms JP, Lombardi J (1992) Reflections on the evolution of piscine viviparity. Am Zool 32:276–293. doi:10.1093/icb/32.2.276 Google Scholar
  259. Xie Y, Reeve JN (2004) Transcription by an archaeal RNA polymerase is slowed but not blocked by an archaeal nucleosome. J Bacteriol 186:3492–3498. doi:10.1128/jb.186.11.3492-3498.2004 PubMedCentralPubMedGoogle Scholar
  260. Yadon AN, Van de Mark D, Basom R, Delrow J, Whitehouse I, Tsukiyama T (2010) Chromatin remodeling around nucleosome-free regions leads to repression of noncoding RNA transcription. Mol Cell Biol 30:5110–5122. doi:10.1128/mcb.00602-10 PubMedCentralPubMedGoogle Scholar
  261. Yamashita T et al (2000) Comprehensive gene expression profile of a normal human liver. Biochem Biophys Res Commun 269:110–116. doi:10.1006/bbrc.2000.2272 PubMedGoogle Scholar
  262. Yao H, Brick K, Evrard Y, Xiao T, Camerini-Otero RD, Felsenfeld G (2010) Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev 24:2543–2555. doi:10.1101/gad.1967810 PubMedCentralPubMedGoogle Scholar
  263. Yoon J-H et al (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47:648–655. doi:10.1016/j.molcel.2012.06.027 PubMedCentralPubMedGoogle Scholar
  264. Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21:564–578PubMedCentralPubMedGoogle Scholar
  265. Zerulla K, Soppa J (2014) Polyploidy in haloarchaea: advantages for growth and survival. Front Microbiol 5:274. doi:10.3389/fmicb.2014.00274 PubMedCentralPubMedGoogle Scholar
  266. Zhang A, Rimsky S, Reaban ME, Buc H, Belfort M (1996) Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. EMBO J 15:1340–1349PubMedCentralPubMedGoogle Scholar
  267. Zheng D, Gerstein MB (2007) The ambiguous boundary between genes and pseudogenes: the dead rise up, or do they? Trends Genet 23:219–224. doi:10.1016/j.tig.2007.03.003 PubMedGoogle Scholar
  268. Zheng T, Hunag Q, Zhang C, Ni J, She Q, Shen Y (2012) Development of a simvastatin selection marker for a hyperthermophilic acidophile Sulfolobus islandicus. Appl Environ Microbiol 78:568–574PubMedCentralPubMedGoogle Scholar
  269. Zimmerman SB, Murphy LD (1996) Macromolecular crowding and the mandatory condensation of DNA in bacteria. FEBS Lett 390:245–248PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Earth, Atmospheric and Planetary ScienceMITCambridgeUSA
  2. 2.School of the EnvironmentWashington State UniversityPullmanUSA
  3. 3.Center of Astronomy and AstrophysicsTechnical University BerlinBerlinGermany

Personalised recommendations