Salt-Promoted Synthesis of RNA-like Molecules in Simulated Hydrothermal Conditions

Abstract

A fundamental problem in origins of life research is how the first polymers with the properties of nucleic acids were synthesized and incorporated into living systems on the prebiotic Earth. Here, we show that RNA-like polymers can be synthesized non-enzymatically from 5′-phosphate mononucleosides in salty environments. The polymers were identified and analyzed by gel electrophoresis, nanopore analysis, UV spectra, and action of RNases. The synthesis of phosphodiester bonds is driven by the chemical potential made available in the fluctuating hydrated and anhydrous conditions of hydrothermal fields associated with volcanic land masses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Adamala K, Szostak J (2013) Competition between model protocells driven by an encapsulated catalyst. Nat Chem 5:495–501

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. Attwater J, Wochner A, Holliger P (2013) In-ice evolution of RNA polymerase ribozyme activity. Nat Chem 5:1011–1018

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Borer PN, Dengler B, Tinoco I, Uhlenbeck OC (1974) Stability of ribonucleic acid double-stranded helices. J Mol Biol 86:843–853

    CAS  PubMed  Article  Google Scholar 

  4. Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379

    CAS  PubMed  Article  Google Scholar 

  5. Deamer D, Singaram S, Rajamani S, Kompanichenko V, Guggenheim S (2006) Self-assembly processes in the prebiotic environment. Philos Trans R Soc Lond B 361:1809–1818

    CAS  Article  Google Scholar 

  6. DeGuzman V, Vercoutere W, Shenasa H, Deamer D (2014) Generation of oligonucleotides under hydrothermal conditions by non-enzymatic polymerization. J Mol Evol 78:251–262

    CAS  PubMed  Article  Google Scholar 

  7. Doty P, Boedtker H, Fresco JR, Haselkorn R, Litt M (1959) Secondary structure in ribonucleic acids. Proc Natl Acad Sci USA 45:482–499

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  9. Gralla J, Delisi C (1974) mRNA is expected to form stable secondary structures. Nature 248:330–332

    CAS  PubMed  Article  Google Scholar 

  10. Huang W, Ferris JP (2003) Synthesis of 35–40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem Commun 21:1458–1461

    Article  Google Scholar 

  11. Huang W, Ferris JP (2006) One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J Am Chem Soc 128:8914–8919

    CAS  PubMed  Article  Google Scholar 

  12. Inoue T, Orgel LE (1983) A nonenzymatic RNA polymerase model. Science 219:859–862

    CAS  PubMed  Article  Google Scholar 

  13. Kanavarioti A, Monnard PA, Deamer DW (2001) Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology 1:271–281

    CAS  PubMed  Article  Google Scholar 

  14. Lohrmann R, Orgel LE (1973) Prebiotic activation processes. Nature 244:418–420

    CAS  PubMed  Article  Google Scholar 

  15. Meli M, Vergne J, Décout JL, Maurel MC (2002) Adenine–aptamer complexes: a bipartite RNA site that binds the adenine nucleic base. J Biol Chem 277:2104–2111

    CAS  PubMed  Article  Google Scholar 

  16. Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    CAS  PubMed  Article  Google Scholar 

  17. Orgel LE (1987) Evolution of the genetic apparatus: a review. Cold Spring Harb Symp Quant Biol 52:9–16

    CAS  PubMed  Article  Google Scholar 

  18. Rajamani S, Vlassov A, Benner S, Coombs A, Olasagasti F, Deamer D (2008) Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig Life Evol Biosph 38:57–74

    CAS  PubMed  Article  Google Scholar 

  19. Safaee N, Noronha AM, Rodionov D, Kozlov G, Wilds C, Sheldrick GM, Gehring K (2013) Structure of the parallel duplex of poly(A) RNA: evaluation of a 50 year-old prediction. Angew Chem 52:1–5

    Article  Google Scholar 

  20. Schwendinger MG, Rode BM (1992) Investigations on the mechanism of the salt-induced peptide formation. Orig Life Evol Biosph 22:349–359

    CAS  PubMed  Article  Google Scholar 

  21. Schwendinger MG, Tattler R, Saetia S, Liedl KR, Kroemer RT, Rode BM (1995) Salt induced peptide formation: on the selectivity of the copper induced peptide formation under possible prebiotic conditions. Inorg Chim Acta 228:207–214

    CAS  Article  Google Scholar 

  22. Usher DA, McHale AH (1976) Nonenzymatic joining of oligoadenylates on a polyuridylic acid template. Science 192:53–54

    CAS  PubMed  Article  Google Scholar 

  23. Vercoutere W, Winters-Hilt S, Olsen H, Deamer DW, Haussler D, Akeson M (2001) Rapid discrimination among individual DNA molecules at single nucleotide resolution using a nanopore instrument. Nat Biotechnol 19:248–250

    CAS  PubMed  Article  Google Scholar 

  24. Verlander MS, Lohrmann R, Orgel LE (1973) Catalysts for the self-polymerization of adenosine cyclic 2′,3′-phosphate. J Mol Evol 2:303–316

    CAS  PubMed  Article  Google Scholar 

  25. Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper & Row, New York, p 186

    Google Scholar 

Download references

Acknowledgments

The hydrothermal simulation research is supported by a generous gift from the Harry Lonsdale Research Award. We are grateful to Jacques Vergne and to Jean-Luc Décout for valuable discussions related to this work, and Veronica De Guzman for expert nanopore analysis of the hydrothermal polymers.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Marie-Christine Maurel or David Deamer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Da Silva, L., Maurel, MC. & Deamer, D. Salt-Promoted Synthesis of RNA-like Molecules in Simulated Hydrothermal Conditions. J Mol Evol 80, 86–97 (2015). https://doi.org/10.1007/s00239-014-9661-9

Download citation

Keywords

  • RNA synthesis
  • Hydrothermal fields
  • RNA world