Journal of Molecular Evolution

, Volume 80, Issue 2, pp 86–97 | Cite as

Salt-Promoted Synthesis of RNA-like Molecules in Simulated Hydrothermal Conditions

  • Laura Da Silva
  • Marie-Christine MaurelEmail author
  • David DeamerEmail author
Original Article


A fundamental problem in origins of life research is how the first polymers with the properties of nucleic acids were synthesized and incorporated into living systems on the prebiotic Earth. Here, we show that RNA-like polymers can be synthesized non-enzymatically from 5′-phosphate mononucleosides in salty environments. The polymers were identified and analyzed by gel electrophoresis, nanopore analysis, UV spectra, and action of RNases. The synthesis of phosphodiester bonds is driven by the chemical potential made available in the fluctuating hydrated and anhydrous conditions of hydrothermal fields associated with volcanic land masses.


RNA synthesis Hydrothermal fields RNA world 



The hydrothermal simulation research is supported by a generous gift from the Harry Lonsdale Research Award. We are grateful to Jacques Vergne and to Jean-Luc Décout for valuable discussions related to this work, and Veronica De Guzman for expert nanopore analysis of the hydrothermal polymers.


  1. Adamala K, Szostak J (2013) Competition between model protocells driven by an encapsulated catalyst. Nat Chem 5:495–501PubMedCentralPubMedCrossRefGoogle Scholar
  2. Attwater J, Wochner A, Holliger P (2013) In-ice evolution of RNA polymerase ribozyme activity. Nat Chem 5:1011–1018PubMedCentralPubMedCrossRefGoogle Scholar
  3. Borer PN, Dengler B, Tinoco I, Uhlenbeck OC (1974) Stability of ribonucleic acid double-stranded helices. J Mol Biol 86:843–853PubMedCrossRefGoogle Scholar
  4. Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379PubMedCrossRefGoogle Scholar
  5. Deamer D, Singaram S, Rajamani S, Kompanichenko V, Guggenheim S (2006) Self-assembly processes in the prebiotic environment. Philos Trans R Soc Lond B 361:1809–1818CrossRefGoogle Scholar
  6. DeGuzman V, Vercoutere W, Shenasa H, Deamer D (2014) Generation of oligonucleotides under hydrothermal conditions by non-enzymatic polymerization. J Mol Evol 78:251–262PubMedCrossRefGoogle Scholar
  7. Doty P, Boedtker H, Fresco JR, Haselkorn R, Litt M (1959) Secondary structure in ribonucleic acids. Proc Natl Acad Sci USA 45:482–499PubMedCentralPubMedCrossRefGoogle Scholar
  8. Gilbert W (1986) The RNA world. Nature 319:618CrossRefGoogle Scholar
  9. Gralla J, Delisi C (1974) mRNA is expected to form stable secondary structures. Nature 248:330–332PubMedCrossRefGoogle Scholar
  10. Huang W, Ferris JP (2003) Synthesis of 35–40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem Commun 21:1458–1461CrossRefGoogle Scholar
  11. Huang W, Ferris JP (2006) One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J Am Chem Soc 128:8914–8919PubMedCrossRefGoogle Scholar
  12. Inoue T, Orgel LE (1983) A nonenzymatic RNA polymerase model. Science 219:859–862PubMedCrossRefGoogle Scholar
  13. Kanavarioti A, Monnard PA, Deamer DW (2001) Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology 1:271–281PubMedCrossRefGoogle Scholar
  14. Lohrmann R, Orgel LE (1973) Prebiotic activation processes. Nature 244:418–420PubMedCrossRefGoogle Scholar
  15. Meli M, Vergne J, Décout JL, Maurel MC (2002) Adenine–aptamer complexes: a bipartite RNA site that binds the adenine nucleic base. J Biol Chem 277:2104–2111PubMedCrossRefGoogle Scholar
  16. Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393PubMedCrossRefGoogle Scholar
  17. Orgel LE (1987) Evolution of the genetic apparatus: a review. Cold Spring Harb Symp Quant Biol 52:9–16PubMedCrossRefGoogle Scholar
  18. Rajamani S, Vlassov A, Benner S, Coombs A, Olasagasti F, Deamer D (2008) Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig Life Evol Biosph 38:57–74PubMedCrossRefGoogle Scholar
  19. Safaee N, Noronha AM, Rodionov D, Kozlov G, Wilds C, Sheldrick GM, Gehring K (2013) Structure of the parallel duplex of poly(A) RNA: evaluation of a 50 year-old prediction. Angew Chem 52:1–5CrossRefGoogle Scholar
  20. Schwendinger MG, Rode BM (1992) Investigations on the mechanism of the salt-induced peptide formation. Orig Life Evol Biosph 22:349–359PubMedCrossRefGoogle Scholar
  21. Schwendinger MG, Tattler R, Saetia S, Liedl KR, Kroemer RT, Rode BM (1995) Salt induced peptide formation: on the selectivity of the copper induced peptide formation under possible prebiotic conditions. Inorg Chim Acta 228:207–214CrossRefGoogle Scholar
  22. Usher DA, McHale AH (1976) Nonenzymatic joining of oligoadenylates on a polyuridylic acid template. Science 192:53–54PubMedCrossRefGoogle Scholar
  23. Vercoutere W, Winters-Hilt S, Olsen H, Deamer DW, Haussler D, Akeson M (2001) Rapid discrimination among individual DNA molecules at single nucleotide resolution using a nanopore instrument. Nat Biotechnol 19:248–250PubMedCrossRefGoogle Scholar
  24. Verlander MS, Lohrmann R, Orgel LE (1973) Catalysts for the self-polymerization of adenosine cyclic 2′,3′-phosphate. J Mol Evol 2:303–316PubMedCrossRefGoogle Scholar
  25. Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper & Row, New York, p 186Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.UMR 7205-ISyEB, CNRS-MNHN-UPMCParisFrance
  2. 2.Department of Biomolecular EngineeringUniversity of CaliforniaSanta CruzUSA

Personalised recommendations