Skip to main content
Log in

The Molecular Symplesiomorphies Shared by the Stem Groups of Metazoan Evolution: Can Sites as Few as 1 % Have a Significant Impact on Recognizing the Phylogenetic Position of Myzostomida?

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Although it is clear that taxon sampling, alignments, gene sampling, tree reconstruction methods and the total length of the sequences used are critical to the reconstruction of evolutionary history, weakly supported or misleading nodes exist in phylogenetic studies with no obvious flaw in those aspects. The phylogenetic studies focusing on the basal part of bilaterian evolution are such a case. During the past decade, Myzostomida has appeared in the basal part of Bilateria in several phylogenetic studies of Metazoa. However, most researchers have entertained only two competing hypotheses about the position of Myzostomida—an affinity with Annelida and an affinity with Platyhelminthes. In this study, dozens of symplesiomorphies were discovered by means of ancestral state reconstruction in the complete 18S and 28S rDNAs shared by the stem groups of Metazoa. By contrastive analysis on the datasets with or without such symplesiomorphic sites, we discovered that Myzostomida and other basal groups are basal lineages of Bilateria due to the corresponding symplesiomorphies shared with earlier lineages. As such, symplesiomorphies account for approximately 1–2 % of the whole dataset have an essential impact on phylogenetic inference, and this study reminds molecular systematists of the importance of carrying out ancestral state reconstruction at each site in sequence-based phylogenetic studies. In addition, reasons should be explored for the low support of the hypothesis that Myzostomida belongs to Annelida in the results of phylogenomic studies. Future phylogenetic studies concerning Myzostomida should include all of the basal lineages of Bilateria to avoid directly neglecting the stand-alone basal position of Myzostomida as a potential hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  CAS  PubMed  Google Scholar 

  • Baguñà J, Martinez P, Paps J, Riutort M (2008) Back in time: a new systematic proposal for the Bilateria. Philos Trans R Soc Lond B Biol Sci 363:1481–1491

    Article  PubMed Central  PubMed  Google Scholar 

  • Bao J, Xia H, Zhou J, Liu X, Wang G (2013) Efficient Implementation of MrBayes on multi-GPU. Mol Biol Evol 30:1471–1479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benham WB (1896) Archiannelida, Polychaeta, Myzostomidaria. In: Farmer SF, Shipley AE, editors. The Cambridge natural history. pp 241–334

  • Bleidorn C, Eeckhaut I, Podsiadlowski L, Schult N, McHugh D, Halanych KM, Milinkovitch MC, Tiedemann R (2007) Mitochondrial genome and nuclear sequence data support myzostomida as part of the annelid radiation. Mol Biol Evol 24:1690–1701

    Article  CAS  PubMed  Google Scholar 

  • Bleidorn C, Podsiadlowski L, Zhong M, Eeckhaut I, Hartmann S, Halanych KM, Tiedemann R (2009) On the phylogenetic position of Myzostomida: can 77 genes get it wrong? BMC Evol Biol 9:150

    Article  PubMed Central  PubMed  Google Scholar 

  • Bourlat SJ, Nielsen C, Lockyer AE, Littlewood DT, Telford MJ (2003) Xenoturbella is a deuterostome that eats mollusks. Nature 424:925–928

    Article  CAS  PubMed  Google Scholar 

  • Bourlat SJ, Juliusdottir T, Lowe CJ et al (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444:85–88

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nature Rev Genet 6:361–375

    Article  CAS  PubMed  Google Scholar 

  • Dixon MT, Hillis DM (1993) Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. Mol Biol Evol 10:256–267

    CAS  PubMed  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  CAS  PubMed  Google Scholar 

  • Eeckhaut I, Jangoux M (1991) Fine structure of the spermatophore and intradermic penetration of sperm cells in Myzostoma cirriferum (Annelida, Myzostomida). Zoomorphology 111:49–58

    Article  Google Scholar 

  • Eeckhaut I, Jangoux M (1993) Integument and epidermal sensory structures of Myzostoma cirriferum (Myzostomida). Zoomorphology 113:33–46

    Article  Google Scholar 

  • Eeckhaut I, Lanterbecq D (2005) Myzostomida: a review of the phylogeny and ultrastructure. Developments in Hydrobiology 179:253–275

    Article  Google Scholar 

  • Eeckhaut I, Dochy B, Jangoux M (1995) Feeding behaviour and functional morphology of the introvert and digestive system of Myzostoma cirriferum (Myzostomida). Acta Zool 76:307–315

    Article  Google Scholar 

  • Eeckhaut I, McHugh D, Mardulyn P, Tiedemann R, Monteyne D, Jangoux M, Milinkovitch MC (2000) Myzostomida: a link between trochozoans and flatworms? P Roy Soc B-Biol Sci. 267:1383–1392

    Article  CAS  Google Scholar 

  • Eeckhaut I, Fievez L, Müller M (2003) Larval development of Myzostoma cirriferum (Myzostomida). J Morphol 258:269–283

    Article  PubMed  Google Scholar 

  • Evans NM, Holder MT, Barbeitos MS, Okamura B, Cartwright P (2010) The phylogenetic position of Myxozoa: exploring conflicting signals in phylogenomic and ribosomal data sets. Mol Biol Evol 27:2733–2746

    Article  CAS  PubMed  Google Scholar 

  • Fedotov D (1929) Beiträge zur Kenntnis der Morphologie der Myzostomiden. Z Morphol Ökol Tiere 15:156–191

    Article  Google Scholar 

  • Gillespie J, Johnston J, Cannone J, Gutell R (2006) Characteristics of the nuclear (18S, 5.8 S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Mol Biol 15:657–686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giribet G (2002) Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosion? Mol Phylogenet Evol 24:345–357

    Article  CAS  PubMed  Google Scholar 

  • Giribet G, Sørensen MV, Funch P, Kristensen RM, Sterrer W (2004) Investigations into the phylogenetic position of Micrognathozoa using four molecular loci. Cladistics 20:1–13

    Article  Google Scholar 

  • Graff L (1877) Das Genus Myzostoma (F.S. Leuckhart). Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Halanych KM (2004) The new view of animal phylogeny. Ann Rev Ecol Evol Syst 35:229–256

    Article  Google Scholar 

  • Hall T (2011) BioEdit version 7.1.3. Distributed by the author. Available: http://www.mbio.ncsu.edu/BioEdit/bioedit.html. Accessed 11 April 11

  • Hartmann S, Helm C, Nickel B, Meyer M, Struck TH, Tiedemann R, Selbig J, Bleidorn C (2012) Exploiting gene families for phylogenomic analysis of Myzostomid transcriptome data. PLoS ONE 7:e29843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A et al (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. P Roy Soc B-Biol Sci 276:4261–4270

    Article  Google Scholar 

  • Helm C, Bernhart SH, Siederdissen CH, Nickel B, Bleidorn C (2012) Deep sequencing of small RNAs confirms an annelid affinity of Myzostomida. Mol Phylogenet Evol 64:198–203

    Article  CAS  PubMed  Google Scholar 

  • Helmkampf M, Bruchhaus I, Hausdorf B (2008) Multigene analysis of lophophorate and chaetognath phylogenetic relationships. Mol Phylogenet Evol 46:206–214

    Article  CAS  PubMed  Google Scholar 

  • Hillis DM, Pollock DD, McGuire JA, Zwickl DJ (2003) Is sparse taxon sampling a problem for phylogenetic inference? Syst Biol 52:124–126

    Article  PubMed Central  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Beyesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Jenner RA (2003) Unleashing the force of cladistics? Metazoan phylogenetics and hypothesis testing. Integr Comp Biol 43:207–218

    Article  PubMed  Google Scholar 

  • Jenner RA (2004) The scientific status of metazoan cladistics: why current research practice must change. Zool Scr 33:293–310

    Article  Google Scholar 

  • Jondelius U, Ruiz-Trillo I, Baguñà J, Riutort M (2002) The Nemertodermatida are basal bilaterians not members of Platyhelminthes. Zool Scr 31:201–215

    Article  Google Scholar 

  • Kato K (1952) On the development of myzostome. Sci Rep Saitama Univ (B) 1:1–16

    Google Scholar 

  • Kjer KM (1995) Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol Phylogenet Evol 4:314–330

    Article  CAS  PubMed  Google Scholar 

  • Kjer KM (2004) Aligned 18S and insect phylogeny. Syst Biol 53:506–514

    Article  PubMed  Google Scholar 

  • Kjer KM, Carle FL, Litman J, Ware J (2006) A molecular phylogeny of Hexapoda. Arthropod Syst Phylogeny 64:35–44

    Google Scholar 

  • Kvist S, Siddall ME (2013) Phylogenomics of Annelida revisited: a cladistic approach using genome–wide expressed sequence tag data mining and examining the effects of missing data. Cladistics 29:435–448

    Article  Google Scholar 

  • Lanterbecq D, Bleidorn C, Michel S, Eeckhaut I (2008) Locomotion and fine structure of parapodia in Myzostoma cirriferum (Myzostomida). Zoomorphology 127:59–68

    Article  Google Scholar 

  • Larkin M, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Leuckart FS (1827) Versuch einer naturgemässen Eintheilung der Helminthen. Neue Akademische Buchhandlung von Karl Gross, Heidelberg

    Google Scholar 

  • López-Giráldez F, Townsend JP (2011) PhyDesign: an online application for profiling phylogenetic informativeness. BMC Evol Biol 11:152

    Article  PubMed Central  PubMed  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org. Accessed 30 September 2011

  • Mallatt J, Craig CW, Yoder MJ (2010) Nearly complete rRNA genes assembled from across the metazoan animals: effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction. Mol Phylogenet Evol 55:1–17

    Article  PubMed  Google Scholar 

  • Mallatt J, Craig CW, Yoder MJ (2012) Nearly complete rRNA genes from 371 Animalia: updated structure-based alignment and detailed phylogenetic analysis. Mol Phylogenet Evol 64:603–617

    Article  CAS  PubMed  Google Scholar 

  • Marlétaz F, Martin E, Perez Y, Papillon D, Caubit X, Lowe CJ, Freeman B, Fasano L, Dossat C, Wincker P, Weissenbach J, Le Parco Y (2006) Chaetognath phylogenomics: a protostome with deuterostome-like development. Curr Biol 16:R577–R578

  • Müeller MC, Westheide W (2000) Structure of the nervous system of Myzostoma cirriferum (Annelida) as revealed by immunohistochemistry and cLSM analyses. J Morphol 245:87–98

    Article  Google Scholar 

  • Mwinyi A, Bailly X, Bourlat S, Jondelius U, Littlewood DT, Podsiadlowski L (2010) The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis. BMC Evol Biol 10:309

    Article  PubMed Central  PubMed  Google Scholar 

  • Paps J, BaguñàJ Riutort M (2009) Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes. P Roy Soc B-Biol Sci 276:1245–1254

    Article  CAS  Google Scholar 

  • Passamaneck Y, Halanych KM (2006) Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly. Mol Phylogenet Evol 40:20–28

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Telford MJ (2006) Large-scale sequencing and the new animal phylogeny. Trends Ecol Evol 21:614–620

    Article  PubMed  Google Scholar 

  • Philippe H, Lartillot N, Brinkmann H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Brinkmann H, Martinez P, Riutort M, Baguñà J (2007) Acoel flatworms are not platyhelminthes: evidence from phylogenomics. PLoS ONE 2:e717

    Article  PubMed Central  PubMed  Google Scholar 

  • Pietsch A, Westheide W (1987) Protonephridial organs in Myzostoma cirriferum (Myzostomida). Acta Zoologica 68:195–203

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Reuter J, Mathews D (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129

    Article  PubMed Central  PubMed  Google Scholar 

  • Rokas A, Krüger D, Carroll SB (2005) Animal evolution and the molecular signature of radiations compressed in time. Science 310:1933–1938

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Trillo I, Riutort M, Littlewood DT, Herniou EA, Baguñà J (1999) Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283:1919–1923

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. P Roy Soc B-Biol Sci 99:11246–11251

    CAS  Google Scholar 

  • Semper C (1858) Zur Anatomie und Entwicklungsgeschichte der Gattung Myzostoma Leuckhart. Z Wiss Zool 9:48–65

    Google Scholar 

  • Simmons MP, Reeves A, Davis JI (2004) Character-state space versus rate of evolution in phylogenetic inference. Cladistics 20:191–204

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Struck TH, Paul C, Hill N, Hartmann S, Hösel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G (2011) Phylogenomic analyses unravel annelid evolution. Nature 471:95–98

    Article  CAS  PubMed  Google Scholar 

  • Telford MJ, Lockyer AE, Cartwright-Finch C, Littlewood DTJ (2003) Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. P Roy Soc B-Biol Sci 270:1077–1083

    Article  CAS  Google Scholar 

  • Tillier ERM, Collins RA (1998) High apparent rate of simultaneous compensatory base-pair substitutions in ribosomal RNA. Genetics 148:1993–2002

    PubMed Central  CAS  PubMed  Google Scholar 

  • Townsend JP (2007) Profiling phylogenetic informativeness. Syst Biol 56:222–231

    Article  CAS  PubMed  Google Scholar 

  • Townsend JP, Su Z, Tekle YI (2012) Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny. Syst Biol 61:835–849

    Article  CAS  PubMed  Google Scholar 

  • Valentine JW (1997) Cleavage patterns and the topology of the metazoan tree of life. Proc Natl Acad Sci USA 94:8001–8005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wägele JW, Mayer C (2007) Visualizing differences in phylogenetic information content of alignments and distinction of three classes of long-branch effects. BMC Evol Biol 7:147

    Article  PubMed Central  PubMed  Google Scholar 

  • Wallberg A, Thollesson M, Farris JS, Jondelius U (2004) The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 20:558–578

    Article  Google Scholar 

  • Wallberg A, Curini-Galletti M, Ahmadzadeh A, Jondelius U (2007) Dismissal of Acoelomorpha: acoela and Nemertodermatida are separate early bilaterian clades. Zool Sci 36:509–523

    Article  Google Scholar 

  • Wang YH, Engel MS, Rafael JA, Dang K, Wu HY, Wang Y, Xie Q, Bu WJ (2013) A unique box in 28S rRNA is shared by the enigmatic insect order zoraptera and dictyoptera. PLoS ONE 8:e53679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie Q, Tian X, Qin Y, Bu W (2009) Phylogenetic comparison of local length plasticity of the small subunit of nuclear rDNAs among all hexapoda orders and the impact of hyper length variation on alignment. Mol Phylogenet Evol 50:310–316

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Wang Y, Lin J, Qin Y, Wang Y, Bu W (2012) Potential key bases of ribosomal RNA to kingdom-specific spectra of antibiotic susceptibility and the possible archaeal origin of eukaryotes. PLoS ONE 7:e29468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong M, Hansen B, Nesnidal M, Golombek A, Halanych KM, Struck TH (2011) Detecting the symplesiomorphy trap: a multigene phylogenetic analysis of terebelliform annelids. BMC Evol Biol 11:369

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Liu X, Stones DS, Xie Q, Wang G (2011) MrBayes on a graphics processing unit. Bioinformatics 27:1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Zmasek C, Eddy S (2002) RIO: analyzing proteomes by automated phylogenomics using resampled inference of orthologs. BMC Bioinformatics 3:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Zrzavý J, Hypša V (2003) Myxozoa, polypodium, and the origin of the bilateria: the phylogenetic position of “Endocnidozoa” in light of the rediscovery of Buddenbrockia. Cladistics 19:164–169

    Article  Google Scholar 

  • Zrzavý J, Hypša V, Tietz DF (2001) Myzostomida are not annelids: molecular and morphological support for a clade of animals with anterior sperm flagella. Cladistics 17:170–198

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Foundation Projects (Grant numbers: 31222051, J1210005, 31071959) and Science Foundation of Tianjin (Grant number: 11JCYBJC08100).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xie, Q. The Molecular Symplesiomorphies Shared by the Stem Groups of Metazoan Evolution: Can Sites as Few as 1 % Have a Significant Impact on Recognizing the Phylogenetic Position of Myzostomida?. J Mol Evol 79, 63–74 (2014). https://doi.org/10.1007/s00239-014-9635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-014-9635-y

Keywords

Navigation