Skip to main content
Log in

Pleiotropic Constraints, Expression Level, and the Evolution of miRNA Sequences

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Post-transcriptional gene regulation mediated by microRNAs (miRNAs) plays critical roles during development by modulating gene expression and conferring robustness to stochastic errors. Phylogenetic analyses suggest that miRNA acquisition could play a role in phenotypic innovation. Moreover, miRNA-induced regulation strongly impacts genome evolution, increasing selective constraints on 3′UTRs, protein sequences, and expression level divergence. Thus, it is essential to understand the factors governing sequence evolution for this important class of regulatory molecules. Investigation of the patterns of molecular evolution at miRNA loci have been limited in Caenorhabditis elegans because of the lack of a close outgroup. Instead, I used Caenorhabditis briggsae as the focus point of this study because of its close relationship to Caenorhabditis sp. 9. I also corroborated the patterns of sequence evolution in Caenorhabditis using published orthologous relationships among miRNAs in Drosophila. In nematodes and in flies, miRNA sequence divergence is not influenced by the genomic neighborhood (i.e., intronic or intergenic) but is nevertheless affected by the genomic context because X-linked miRNAs evolve faster than autosomal miRNAs. However, this effect of chromosomal linkage can be explained by differential expression levels rather than a fast-X effect. The results presented here support a universal negative relationship between rates of molecular evolution and expression level, and suggest that mutations in highly expressed miRNAs are more likely to be deleterious because they potentially affect a larger number of target genes. Finally, I show that many single family member miRNAs evolve faster than miRNAs from multigene families and have limited functional scope, suggesting that they are not strongly integrated in gene regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott AL (2010) Uncovering new functions for microRNAs in Caenorhabditis elegans. Curr Biol 21:R668–R671

    Article  CAS  Google Scholar 

  • Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Saavedra E, Horvitz HR (2010) Many families of C. elegans microRNAs are not essential for development or viability. Curr Biol 20:367–373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Axtell MJ, Westholm JO, Lai EC (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker CR, Tuch BB, Johnson AD (2011) Extensive DNA-binding specificity divergence of a conserved transcription regulator. Proc Natl Acad Sci USA 108:7493–7498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400

    Article  CAS  PubMed  Google Scholar 

  • Berezikov E, Robine N, Samsonova A, Westholm JO, Naqvi A, Hung JH, Okamura K, Dai Q, Bortolamiol-Becet D, Martin R, Zhao Y, Zamore PD, Hannon GJ, Marra MA, Weng Z, Perrimon N, Lai EC (2011) Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 21:203–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA 108:15920–15924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campo-Paysaa F, Semon M, Cameron RA, Peterson KJ, Schubert M (2011) MicroRNA complements in deuterostomes: origin and evolution of microRNAs. Evol Dev 13:15–27

    Article  CAS  PubMed  Google Scholar 

  • Canestro C, Catchen JM, Rodriguez-Mari A, Yokoi H, Postlethwait JH (2009) Consequences of lineage-specific gene loss on functional evolution of surviving paralogs: ALDH1A and retinoic acid signaling in vertebrate genomes. PLoS Genet 5:e1000496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Rajewsky N (2006) Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 38:1452–1456

    Article  CAS  PubMed  Google Scholar 

  • Chen SC, Chuang TJ, Li WH (2011) The relationships among microRNA regulation, intrinsically disordered regions, and other indicators of protein evolutionary rate. Mol Biol Evol 28(9):2513–2520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng C, Bhardwaj N, Gerstein M (2009) The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genomics 10:431

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cui Q, Yu Z, Purisima EO, Wang E (2007) MicroRNA regulation and interspecific variation of gene expression. Trends Genet 23:372–375

    Article  CAS  PubMed  Google Scholar 

  • Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16:861–865

    Article  CAS  PubMed  Google Scholar 

  • Cutter AD (2008) Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate. Mol Biol Evol 25:778–786

    Article  CAS  PubMed  Google Scholar 

  • Cutter AD, Ward S (2005) Sexual and temporal dynamics of molecular evolution in C. elegans development. Mol Biol Evol 22:178–188

    Article  CAS  PubMed  Google Scholar 

  • de Meaux J, Hu JY, Tartler U, Goebel U (2008) Structurally different alleles of the ath-MIR824 microRNA precursor are maintained at high frequency in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:8994–8999

    Article  PubMed Central  PubMed  Google Scholar 

  • de Wit E, Linsen SE, Cuppen E, Berezikov E (2009) Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Res 19:2064–2074

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drummond DA, Wilke CO (2009) The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 10:715–724

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH (2005) Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA 102:14338–14343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duan R, Pak C, Jin P (2007) Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 16:1124–1131

    Article  CAS  PubMed  Google Scholar 

  • Ehrenreich IM, Purugganan MD (2008) Sequence variation of microRNAs and their binding sites in Arabidopsis. Plant Physiol 146:1974–1982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fahlgren N, Jogdeo S, Kasschau KD, Sullivan CM, Chapman EJ, Laubinger S, Smith LM, Dasenko M, Givan SA, Weigel D, Carrington JC (2010) MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 22:1074–1089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  CAS  PubMed  Google Scholar 

  • Felekkis K, Voskarides K, Dweep H, Sticht C, Gretz N, Deltas C (2011) Increased number of microRNA target sites in genes encoded in CNV regions. Evidence for an evolutionary genomic interaction? Mol Biol Evol 28:2421–2424

    Article  CAS  PubMed  Google Scholar 

  • Félix MA, Duveau F (2012) Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol 10:59

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Félix MA, Jovelin R, Ferrari C, Han S, Cho YR, Andersen EC, Cutter AD, Braendle C (2013) Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical forest. BMC Evol Biol 13:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:1193–1197

    Article  CAS  PubMed  Google Scholar 

  • Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36:W70–W74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66

    Article  CAS  PubMed  Google Scholar 

  • Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Holstein TW (2006) The Wnt code: cnidarians signal the way. Oncogene 25:7450–7460

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Lu Z (2010) The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PLoS ONE 5:e11387

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo X, Su B, Zhou Z, Sha J (2009) Rapid evolution of mammalian X-linked testis microRNAs. BMC Genomics 10:97

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heimberg AM, Sempere LF, Moy VN, Donoghue PC, Peterson KJ (2008) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA 105:2946–2950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heimberg AM, Cowper-Sal-lari R, Semon M, Donoghue PC, Peterson KJ (2010) microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci USA 107:19379–19383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herranz H, Cohen SM (2010) MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 24:1339–1344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoeppner MP, White S, Jeffares DC, Poole AM (2009) Evolutionarily stable association of intronic snoRNAs and microRNAs with their host genes. Genome Biol Evol 1:420–428

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hsiao TL, Vitkup D (2008) Role of duplicate genes in robustness against deleterious human mutations. PLoS Genet 4:e1000014

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Iwama H, Kato K, Imachi H, Murao K, Masaki T (2013) Human microRNAs originated from two periods at accelerated rates in mammalian evolution. Mol Biol Evol 30:613–626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jan CH, Friedman RC, Ruby JG, Bartel DP (2011) Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469:97–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA 105:7269–7274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B, de la Chapelle A (2009) Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA 106:1502–1505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jovelin R, Cutter AD (2011) MicroRNA sequence variation potentially contributes to within-species functional divergence in the nematode Caenorhabditis briggsae. Genetics 189:967–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jovelin R, Phillips PC (2011) Expression level drives the pattern of selective constraints along the insulin/Tor signal transduction pathway in Caenorhabditis. Genome Biol Evol 3:715–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jovelin R, Yan YL, He X, Catchen J, Amores A, Canestro C, Yokoi H, Postlethwait JH (2010) Evolution of developmental regulation in the vertebrate FgfD subfamily. J Exp Zool B Mol Dev Evol 314:33–56

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kasbauer T, Towb P, Alexandrova O, David CN, Dall’armi E, Staudigl A, Stiening B, Bottger A (2007) The Notch signaling pathway in the cnidarian Hydra. Dev Biol 303:376–390

    Article  PubMed  CAS  Google Scholar 

  • Kiontke KC, Felix MA, Ailion M, Rockman MV, Braendle C, Penigault JB, Fitch DH (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 11:339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kozlowska JL, Ahmad AR, Jahesh E, Cutter AD (2012) Genetic variation for postzygotic reproductive isolation between Caenorhabditis briggsae and Caenorhabditis sp. 9. Evolution 66:1180–1195

    Article  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Yang CW, Chen CY, Au LC (2011) Single point mutation of microRNA may cause butterfly effect on alteration of global gene expression. Biochem Biophys Res Commun 404:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137:273–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Liu Y, Dong D, Zhang Z (2010) Evolution of an X-linked primate-specific micro RNA cluster. Mol Biol Evol 27:671–683

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Li WH (2009) Lowly expressed human microRNA genes evolve rapidly. Mol Biol Evol 26:1195–1198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu G, Min H, Yue S, Chen CZ (2008) Pre-miRNA loop nucleotides control the distinct activities of mir-181a-1 and mir-181c in early T cell development. PLoS ONE 3:e3592

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Loh YH, Yi SV, Streelman JT (2011) Evolution of microRNAs and the diversification of species. Genome Biol Evol 3:55–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu J, Clark AG (2012) Impact of microRNA regulation on variation in human gene expression. Genome Res 22:1243–1254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu J, Fu Y, Kumar S, Shen Y, Zeng K, Xu A, Carthew R, Wu CI (2008a) Adaptive evolution of newly emerged micro-RNA genes in Drosophila. Mol Biol Evol 25:929–938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu J, Shen Y, Wu Q, Kumar S, He B, Shi S, Carthew RW, Wang SM, Wu CI (2008b) The birth and death of microRNA genes in Drosophila. Nat Genet 40:351–355

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Force AG (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156:590–605

    Article  Google Scholar 

  • Managadze D, Rogozin IB, Chernikova D, Shabalina SA, Koonin EV (2011) Negative correlation between expression level and evolutionary rate of long intergenic noncoding RNAs. Genome Biol Evol 3:1390–1404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mank JE, Vicoso B, Berlin S, Charlesworth B (2010) Effective population size and the Faster-X effect: empirical results and their interpretation. Evolution 64:663–674

    Article  PubMed  Google Scholar 

  • Matus DQ, Thomsen GH, Martindale MQ (2007) FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Dev Genes Evol 217:137–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H (2013) Birth and expression evolution of mammalian microRNA genes. Genome Res 23:34–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3:e215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A (2011) microRNAs can generate thresholds in target gene expression. Nat Genet 43:854–859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mushegian AR, Garey JR, Martin J, Liu LX (1998) Large-scale taxonomic profiling of eukaryotic model organisms: a comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes. Genome Res 8:590–598

    CAS  PubMed  Google Scholar 

  • Nichols SA, Dirks W, Pearse JS, King N (2006) Early evolution of animal cell signaling and adhesion genes. Proc Natl Acad Sci USA 103:12451–12456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nozawa M, Miura S, Nei M (2010) Origins and evolution of microRNA genes in Drosophila species. Genome Biol Evol 2:180–189

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15:354–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quach H, Barreiro LB, Laval G, Zidane N, Patin E, Kidd KK, Kidd JR, Bouchier C, Veuille M, Antoniewski C, Quintana-Murci L (2009) Signatures of purifying and local positive selection in human miRNAs. Am J Hum Genet 84:316–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramani AK, Chuluunbaatar T, Verster AJ, Na H, Vu V, Pelte N, Wannissorn N, Jiao A, Fraser AG (2012) The majority of animal genes are required for wild-type fitness. Cell 148:792–802

    Article  CAS  PubMed  Google Scholar 

  • Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207

    Article  CAS  PubMed  Google Scholar 

  • Saunders MA, Liang H, Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA 104:3300–3305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schertel C, Rutishauser T, Forstemann K, Basler K (2012) Functional characterization of Drosophila microRNAs by a novel in vivo library. Genetics 192:1543–1552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen Y, Lv Y, Huang L, Liu W, Wen M, Tang T, Zhang R, Hungate E, Shi S, Wu CI (2011) Testing hypotheses on the rate of molecular evolution in relation to gene expression using microRNAs. Proc Natl Acad Sci USA 108:15942–15947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38:789–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh ND, Davis JC, Petrov DA (2005) X-linked genes evolve higher codon bias in Drosophila and Caenorhabditis. Genetics 171:145–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123:1133–1146

    Article  CAS  PubMed  Google Scholar 

  • Takuno S, Innan H (2011) Selection fine tunes the expression of microRNA target genes in Arabidopsis thaliana. Mol Biol Evol 28:2429–2434

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Technau U, Rudd S, Maxwell P, Gordon PM, Saina M, Grasso LC, Hayward DC, Sensen CW, Saint R, Holstein TW, Ball EE, Miller DJ (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21:633–639

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vicoso B, Charlesworth B (2006) Evolution on the X chromosome: unusual patterns and processes. Nat Rev Genet 7:645–653

    Article  CAS  PubMed  Google Scholar 

  • Vicoso B, Haddrill PR, Charlesworth B (2008) A multispecies approach for comparing sequence evolution of X-linked and autosomal sites in Drosophila. Genet Res (Camb) 90:421–431

    Article  CAS  Google Scholar 

  • Wang QH, Zhou M, Sun J, Ning SW, Li Y, Chen L, Zheng Y, Li X, Lv SL, Li X (2010) Systematic analysis of human microRNA divergence based on evolutionary emergence. FEBS Lett 585:240–248

    Article  PubMed  CAS  Google Scholar 

  • Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68

    Article  CAS  PubMed  Google Scholar 

  • Woodruff GC, Eke O, Baird SE, Felix MA, Haag ES (2010) Insights into species divergence and the evolution of hermaphroditism from fertile interspecies hybrids of Caenorhabditis nematodes. Genetics 186:997–1012

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu CI, Shen Y, Tang T (2009) Evolution under canalization and the dual roles of microRNAs: a hypothesis. Genome Res 19:734–743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang JR, Zhuang SM, Zhang J (2010) Impact of translational error-induced and error-free misfolding on the rate of protein evolution. Mol Syst Biol 6:421

    PubMed Central  PubMed  Google Scholar 

  • Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC, Chen KC, Lai EC (2011) Widespread regulatory activity of vertebrate microRNA* species. RNA 17:312–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yue SB, Trujillo RD, Tang Y, O’Gorman WE, Chen CZ (2011) Loop nucleotides control primary and mature miRNA function in target recognition and repression. RNA Biol 8:1115–1123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang R, Peng Y, Wang W, Su B (2007) Rapid evolution of an X-linked microRNA cluster in primates. Genome Res 17:612–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Asher Cutter for comments on the manuscript. I also thank the Associate Editor and one anonymous reviewer for valuable comments and suggestions. This work was supported by grants from the Ontario Ministry of Research and Innovation and the National Health Institutes (R01-GM096008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Jovelin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 286 kb)

Supplementary material 2 (TXT 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jovelin, R. Pleiotropic Constraints, Expression Level, and the Evolution of miRNA Sequences. J Mol Evol 77, 206–220 (2013). https://doi.org/10.1007/s00239-013-9588-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9588-6

Keywords

Navigation