Skip to main content
Log in

The Paradox of Dual Roles in the RNA World: Resolving the Conflict Between Stable Folding and Templating Ability

  • Letter to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The hypothesized dual roles of RNA as both information carrier and biocatalyst during the earliest stages of life require a combination of features: good templating ability (for replication) and stable folding (for ribozymes). However, this poses the following paradox: well-folded sequences are poor templates for copying, but poorly folded sequences are unlikely to be good ribozymes. Here, we describe a strategy to overcome this dilemma through G:U wobble pairing in RNA. Unlike Watson–Crick base pairs, wobble pairs contribute highly to the energetic stability of the folded structure of their sequence, but only slightly, if at all, to the stability of the folded reverse complement. Sequences in the RNA World might thereby combine stable folding of the ribozyme with an unstructured, reverse-complementary genome, resulting in a “division of labor” between the strands. We demonstrate this strategy using computational simulations of RNA folding and an experimental model of early replication, nonenzymatic template-directed RNA primer extension. Additional study is needed to solve other problems associated with a complete replication cycle, including separation of strands after copying. Interestingly, viroid RNA sequences, which have been suggested to be relics of an RNA World (Diener, Proc Natl Acad Sci USA 86:9370–9374, 1989), also show significant asymmetry in folding energy between the infectious (+) and template (−) strands due to G:U pairing, suggesting that this strategy may even be used by replicators in the present day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    Article  CAS  PubMed  Google Scholar 

  • Bernhart SH, Tafer H, Muckstein U, Flamm C, Stadler PF, Hofacker IL (2006) Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen IA, Hanczyc MM, Sazani PL, Szostak JW (2006) Protocells: genetic polymers inside membrane vesicles. In: Gesteland R, Cech T, Atkins J (eds) The RNA World. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Cheng LK, Unrau PJ (2010) Closing the circle: replicating RNA with RNA. Cold Spring Harb Perspect Biol 2:a002204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  CAS  PubMed  Google Scholar 

  • Daros JA, Elena SF, Flores R (2006) Viroids: an Ariadne’s thread into the RNA labyrinth. EMBO Rep 7:593–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Derr J, Manapat ML, Rajamani S, Leu K, Xulvi-Brunet R, Joseph I, Nowak MA, Chen IA (2012) Prebiotically plausible mechanisms increase compositional diversity of nucleic acid sequences. Nucleic Acids Res 40:4711–4722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diener TO (1989) Circular RNAs: Relics of precellular evolution? Proc Natl Acad Sci USA 86:9370–9374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  CAS  PubMed  Google Scholar 

  • Flores R, Serra P, Minoia S, Di Serio F, Navarro B (2012) Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs. Front Microbiol 3:217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forsdyke DR (2007) Calculation of folding energies of single-stranded nucleic acid sequences: conceptual issues. J Theor Biol 248:745–753

    Article  CAS  PubMed  Google Scholar 

  • Gago S, Elena SF, Flores R, Sanjuan R (2009) Extremely high mutation rate of a hammerhead viroid. Science 323:1308

    Article  CAS  PubMed  Google Scholar 

  • Gesteland R, Cech T, Atkins J (eds) (2006) The RNA world. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Hofacker IL, Stadler PF (2006) Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics 22:1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte Fur Chemie 125:167–188

    Article  CAS  Google Scholar 

  • Joyce GF (2009) Evolution in an RNA world. Cold Spring Harb Symp Quant Biol 74:17–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kennedy R, Lladser ME, Wu Z, Zhang C, Yarus M, De Sterck H, Knight R (2010) Natural and artificial RNAs occupy the same restricted region of sequence space. RNA 16:280–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–3531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leu K, Obermayer B, Rajamani S, Gerland U, Chen IA (2011) The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA. Nucleic Acids Res 39:8135–8147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leu K, Kervio E, Obermayer B, Turk-MacLeod RM, Yuan C, Luevano JM Jr, Chen E, Gerland U, Richert C, Chen IA (2013) Cascade of reduced speed and accuracy after errors in enzyme-free copying of nucleic acid sequences. J Am Chem Soc 135:354–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed Central  PubMed  Google Scholar 

  • McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1105–1119

    Article  CAS  PubMed  Google Scholar 

  • Muller UF (2006) Re-creating an RNA world. Cell Mol Life Sci 63:1278–1293

    Article  CAS  PubMed  Google Scholar 

  • Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F (2012) Viroids: how to infect a host and cause disease without encoding proteins. Biochimie 94:1474–1480

    Article  CAS  PubMed  Google Scholar 

  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  CAS  PubMed  Google Scholar 

  • Peters IR, Helps CR, Hall EJ, Day MJ (2004) Real-time RT-PCR: considerations for efficient and sensitive assay design. J Immunol Methods 286:203–217

    Article  CAS  PubMed  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  CAS  PubMed  Google Scholar 

  • Rajamani S, Ichida JK, Antal T, Treco DA, Leu K, Nowak MA, Szostak JW, Chen IA (2010) Effect of stalling after mismatches on the error catastrophe in nonenzymatic nucleic acid replication. J Am Chem Soc 132:5880–5885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rocheleau L, Pelchat M (2006) The subviral RNA database: a toolbox for viroids, the hepatitis delta virus and satellite RNAs research. BMC Microbiol 6:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Schrum JP, Zhu TF, Szostak JW (2010) The origins of cellular life. Cold Spring Harb Perspect Biol 2:a002212

    Article  PubMed Central  PubMed  Google Scholar 

  • Szabo P, Scheuring I, Czaran T, Szathmary E (2002) In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity. Nature 420:340–343

    Article  CAS  PubMed  Google Scholar 

  • Szostak JW (2013) The eightfold path to non-enzymatic RNA replication. J Syst Chem 3:2

    Article  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    Article  CAS  PubMed  Google Scholar 

  • Turner DH, Mathews DH (2010) NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res 38:D280–D282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weimann BJ, Lohrmann R, Orgel LE, Schneider-Bernloehr H, Sulston JE (1968) Template-directed synthesis with adenosine-5′-phosphorimidazolide. Science 161:387

    Article  CAS  PubMed  Google Scholar 

  • Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Muller UF (2011) Polymerase ribozyme efficiency increased by G/T-rich DNA oligonucleotides. RNA 17:1274–1281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 A resolution. Science 292:883–896

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers and the editors for their comments. This work was supported by Grant 290356 from the Simons Foundation (I.A.C.), Grant RFP-12-05 from the Foundational Questions in Evolutionary Biology Fund of the John Templeton Foundation (I.A.C), a DAAD Grant (B.O.), DFG Grant GE 1098/3-1 (U.G.), and NIH Grant GM068763 to the Center for Modular Biology at Harvard. I.A.C. was a Bauer Fellow at Harvard University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene A. Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 927 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivica, N.A., Obermayer, B., Campbell, G.W. et al. The Paradox of Dual Roles in the RNA World: Resolving the Conflict Between Stable Folding and Templating Ability. J Mol Evol 77, 55–63 (2013). https://doi.org/10.1007/s00239-013-9584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9584-x

Keywords

Navigation