Skip to main content

Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes

Abstract

Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the MsDMI3 kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient Sinorhizobium meliloti B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Appleby CA, Bergersen FJ (eds) (1980) Preparation and experimental use of leghaemoglobin. Wiley, Chichester

    Google Scholar 

  2. Appleby CA, Bradbury JH (1983) Leghemoglobin: kinetic, nuclear magnetic resonance, and optical studies of pH dependence of oxygen and carbon monoxide binding. J Biol Chem 258:2254–2259

    PubMed  CAS  Google Scholar 

  3. Caetano-Anollés G, Joshi P, Gresshoff P (1991) Spontaneous nodules induce feedback suppression of nodulation in alfalfa. Planta 18:77–82

    Google Scholar 

  4. Chen C, Gao M, Liu J, Zhu H (2007) Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase. Plant Physiol 145:1619–1628

    PubMed  Article  CAS  Google Scholar 

  5. Dalton DA, Langeberg L, Treneman NC (1993) Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiol Plant 87:365–370

    Article  CAS  Google Scholar 

  6. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    PubMed  Article  CAS  Google Scholar 

  7. Dixon R, Cheng Q, Shen G-F, Day A, Dowson-Day M (1997) Nif gene transfer and expression in chloroplasts: prospects and problems. Plant Soil 194:193–203

    Article  CAS  Google Scholar 

  8. Dos Santos P, Fang Z, Mason S, Setubal J, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162

    PubMed  Article  CAS  Google Scholar 

  9. Gallon JR (2001) N2 fixation in phototrophs: adaptation to a specialized way of life. Plant Soil 230:39–48

    Article  CAS  Google Scholar 

  10. Gleason C, Chaudhuri S, Yang T, Munoz A, Poovaiah BW, Oldroyd GE (2006) Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441:1149–1152

    PubMed  Article  CAS  Google Scholar 

  11. Guiñazú LB, Andrés JA, Papa MFD, Pistorio M, Rosas SB (2010) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46:185–190

    Article  Google Scholar 

  12. Kechris K, Lin JC, Bickel PJ, Glazer AN (2006) Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study. PNAS 103:9584–9589

    PubMed  Article  CAS  Google Scholar 

  13. Ladha JK, Reddy PM (1995) Extension of nitrogen fixation to rice — Necessity and possibilities. GeoJournal 35:363–372

    Article  Google Scholar 

  14. McKay C, Navarro-González R (2004) The absence of nitrogen-fixing organelles due to timing of the nitrogen crisis. In: Seckbach J (ed) Symbiosis cellular origin, life in extreme habitats and astrobiology., vol 4Springer, The Netherlands, pp 221–228

    Google Scholar 

  15. Mitra RM, Gleason CA, Edwards A et al (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proc Natl Acad Sci USA 101:4701–4705

    PubMed  Article  CAS  Google Scholar 

  16. Ott T, van Dongen JT, Gu¨nther C et al (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535

    PubMed  Article  CAS  Google Scholar 

  17. Peters JW, Szilagyi RK (2006) Exploring new frontiers of nitrogenase structure and mechanism. Curr Opin Chem Biol 10:101–108

    PubMed  Article  CAS  Google Scholar 

  18. Setten L, Soto G, Mozzicafreddo M et al (2013) Engineering pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS ONE 8:e63666

    PubMed  Article  CAS  Google Scholar 

  19. Soto G, Alleva K, Mazzella MA, Amodeo G, Muschietti JP (2008) AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582:4077–4482

    PubMed  Article  CAS  Google Scholar 

  20. Soto G, Stritzler M, Lisi C et al (2011) Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. J Exp Bot 62:5699–5711

    PubMed  Article  CAS  Google Scholar 

  21. Syvanen M (2012) Evolutionary implications of horizontal gene transfer. Annu Rev Genet 46:341–358

    PubMed  Article  CAS  Google Scholar 

  22. Tirichine L, James EK, Sandal N, Stougaard J (2006) Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia. Mol Plant Microbe Interact 19:373–382

    PubMed  Article  CAS  Google Scholar 

  23. Triplett E (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186:29–38

    Article  CAS  Google Scholar 

  24. Witty JF, Minchin FR (1986) Nitrogen fixation and oxygen in legume root nodule. Plant Cell Biol 3:275–315

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicolás Daniel Ayub.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1.

Method details. Contains the details of the methods followed for the identification and characterization of MsDMI3 gene (DOCX 16 kb)

Online Resource 2

. Complete sequence of 35S-MsDMI3/1-340 vector showing RB: right border, nptII: kanamycin resistance, CaMV35S: constitutive promoter, MsDMI3/1-340 (DMI3 truncated gene from alfalfa, NOS: terminator and LB: left border within t-DNA region (PDF 145 kb)

Online Resource 3.

Similarity of MsDMI3 protein to the DMI3 protein sequence of others plant species. The aminoacid similarity was analyzed and the domain structures of DMI3 protein sequences were identified by HMMPFAM (http://hmmer.wustl.edu/). The domain graphics follow pfam graphical codes: a green rectangle represents the protein kinase domain (PF00069), green and purple small green rectangles represent EF-hand domains (PF13405 and PF00036) and a violet rectangle represents EF-hand domain pair (PF13499). When the sequence match the full length of the HMM that models Pfam the rectangles borders are round while if it does not match the rectangle has jagged edge (PDF 425 kb)

Online Resource 4.

Nodules induced by Sinorhizobium meliloti B399 (nitrogen-fixing nodule) and truncated DMI3 kinase (DMI3-induced nodule) (PDF 2128 kb)

Online Resource 5.

Gel electrophoresis of PCR products of 35SMsDMI3/1-340, virC, nifH and AAT. SN: spontaneous nodule induced by nitrogen deficient conditions, RN: Sinorhizobium meliloti B399 nodule, TN: transgenic nodule containting 35SMsDMI3/1-340 vector, A: Agrobacterium rhizogenes MSU440, S: Sinorhizobium meliloti B399, RA: recombinant Agrobacterium rhizogenes MSU440 containing 35SMsDMI3/1-340 vector (PDF 95 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soto, G., Fox, A.R. & Ayub, N.D. Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes. J Mol Evol 77, 3–7 (2013). https://doi.org/10.1007/s00239-013-9578-8

Download citation

Keywords

  • Nitrogen fixation
  • Evolution
  • Lateral transfer
  • Bacteria
  • Eukaryotes
  • Oxygen