Journal of Molecular Evolution

, Volume 76, Issue 4, pp 192–204 | Cite as

Molecular Phylogeny and Evolution of the Proteins Encoded by Coleoid (Cuttlefish, Octopus, and Squid) Posterior Venom Glands

  • Tim Ruder
  • Kartik Sunagar
  • Eivind A. B. Undheim
  • Syed A. Ali
  • Tak-Cheung Wai
  • Dolyce H. W. Low
  • Timothy N. W. Jackson
  • Glenn F. King
  • Agostinho Antunes
  • Bryan G. Fry
Original Article

Abstract

In this study, we report for the first time a detailed evaluation of the phylogenetic history and molecular evolution of the major coleoid toxins: CAP, carboxypeptidase, chitinase, metalloprotease GON-domain, hyaluronidase, pacifastin, PLA2, SE-cephalotoxin and serine proteases, with the carboxypeptidase and GON-domain documented for the first time in the coleoid venom arsenal. We show that although a majority of sites in these coleoid venom-encoding genes have evolved under the regime of negative selection, a very small proportion of sites are influenced by the transient selection pressures. Moreover, nearly 70 % of these episodically adapted sites are confined to the molecular surface, highlighting the importance of variation of the toxin surface chemistry. Coleoid venoms were revealed to be as complex as other venoms that have traditionally been the recipient of the bulk of research efforts. The presence of multiple peptide/protein types in coleoids similar to those present in other animal venoms identifies a convergent strategy, revealing new information as to what characteristics make a peptide/protein type amenable for recruitment into chemical arsenals. Coleoid venoms have significant potential not only for understanding fundamental aspects of venom evolution but also as an untapped source of novel toxins for use in drug design and discovery.

Keywords

Molecular evolution Coleoid Cephalopod Octopus Squid Cuttlefish Venom Positive selection 

Supplementary material

239_2013_9552_MOESM1_ESM.pdf (585 kb)
Supplementary material 1 (PDF 584 kb)
239_2013_9552_MOESM2_ESM.jpg (290 kb)
Supplementary material 2 (JPG 290 kb)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Anastasi A, Erspamer V (1962) Occurrence and some properties of eledoisin in extracts of posterior salivary glands of Eledone. Br J Pharmacol Chemother 19:326–333PubMedCrossRefGoogle Scholar
  3. Armon A, Graur D, Ben-Tal N (2001) ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J Mol Biol 307:447–463PubMedCrossRefGoogle Scholar
  4. Cariello L, Zanetti L (1977) Alpha- and beta-cephalotoxin: two paralysing proteins from posterior salivary glands of Octopus vulgaris. Comp Biochem Physiol C 57:169–173PubMedCrossRefGoogle Scholar
  5. Casewell NR, Wagstaff SC, Harrison RA, Renjifo C, Wuster W (2011) Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol Biol Evol 28:2637–2649PubMedCrossRefGoogle Scholar
  6. Chang D, Duda TF Jr (2012) Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. Mol Biol Evol 29:2019–2029PubMedCrossRefGoogle Scholar
  7. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San CarlosGoogle Scholar
  8. Delport W, Poon AF, Frost SD, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457PubMedCrossRefGoogle Scholar
  9. Fraczkiewicz R, Braun W (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comput Chem 19:319–333CrossRefGoogle Scholar
  10. Fry BG (2005) From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 15:403–420PubMedCrossRefGoogle Scholar
  11. Fry BG, Wüster W, Kini RM, Brusic V, Khan A, Venkataraman D, Rooney AP (2003) Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol 57:110–129PubMedCrossRefGoogle Scholar
  12. Fry BG, Roelants K, Norman JA (2009) Tentacles of venom: toxic protein convergence in the kingdom animalia. J Mol Evol 68:311–321PubMedCrossRefGoogle Scholar
  13. Ghiretti F (1959) Cephalotoxin: the crab-paralysing agent of the posterior salivary glands of cephalopods. Nature 183:1192–1193CrossRefGoogle Scholar
  14. Ghiretti F (1960) Toxicity of octopus saliva against crustacea. Ann N Y Acad Sci 90:726–741PubMedCrossRefGoogle Scholar
  15. Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736PubMedGoogle Scholar
  16. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435PubMedCrossRefGoogle Scholar
  17. Gotz S, Arnold R, Sebastian-Leon P, Martin-Rodriguez S, Tischler P, Jehl MA, Dopazo J, Rattei T, Conesa A (2011) B2G-FAR, a species-centered GO annotation repository. Bioinformatics 27:919–924PubMedCrossRefGoogle Scholar
  18. Grisley MS (1993) Separation and partial characterization of salivary enzymes expressed during prey handling in the octopus eledone cirrhosa. Comp Biochem Physiol B 105:183–192CrossRefGoogle Scholar
  19. Grisley MS, Boyle PR (1987) Bioassay and proteolytic activity of digestive enzymes from octopus saliva. Comp Biochem Physiol B 88:1117–1123Google Scholar
  20. Grisley MS, Boyle PR (1990) Chitinase, a new enzyme in octopus saliva. Comp Biochem Physiol B 95:311–316Google Scholar
  21. Kanda A, Iwakoshi-Ukena E, Takuwa-Kuroda K, Minakata H (2003) Isolation and characterization of novel tachykinins from the posterior salivary gland of the common octopus Octopus vulgaris. Peptides 24:35–43PubMedCrossRefGoogle Scholar
  22. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371PubMedCrossRefGoogle Scholar
  23. Kordis D, Gubensek F (2000) Adaptive evolution of animal toxin multigene families. Gene 261:43–52PubMedCrossRefGoogle Scholar
  24. Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679CrossRefGoogle Scholar
  25. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901PubMedCrossRefGoogle Scholar
  26. Kosakovsky Pond SL, Murrell B, Fourment M, Frost SD, Delport W, Scheffler K (2011) A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol 28:3033–3043PubMedCrossRefGoogle Scholar
  27. Lo Bianco S (1888) Notizie biologiche riguardanti specialmente il periodo di maturita sessuale degli animali del Golfo di Napoli. Mitth Zool Stat Neapel 8:385–440Google Scholar
  28. Morishita T (1974) Participation in digestion by the proteolytic enzymes of the posterior salivary gland in octopus–II Isolation and purification of the proteolytic enzymes from the posterior salivary gland. Bull Jpn Soc Sci Fish 40:601–607CrossRefGoogle Scholar
  29. Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936PubMedGoogle Scholar
  30. Posada D, Crandall KA (2002) The effect of recombination on the accuracy of phylogeny estimation. J Mol Evol 54:396–402PubMedGoogle Scholar
  31. Romanini MG (1952) Osservazioni sulla ialuronidasi delle ghiandole salivari enteriorie posteriori degli Octopodi. Pubbl Staz Zool Napo 23:251–270Google Scholar
  32. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  33. Ueda A, Nagai H, Ishida M, Nagashima Y, Shiomi K (2008) Purification and molecular cloning of SE-cephalotoxin, a novel proteinaceous toxin from the posterior salivary gland of cuttlefish Sepia esculenta. Toxicon 52:574–581PubMedCrossRefGoogle Scholar
  34. Undheim EAB, Norman JA, Thoen HH, Fry BG (2010) Genetic identification of Southern Ocean octopod samples using mtCOI. CR Biol 333:395–404CrossRefGoogle Scholar
  35. Weinberger H, Moran Y, Gordon D, Turkov M, Kahn R, Gurevitz M (2010) Positions under positive selection—key for selectivity and potency of scorpion alpha-toxins. Mol Biol Evol 27:1025–1034PubMedCrossRefGoogle Scholar
  36. Wong ESW, Belov K (2012) Venom evolution through gene duplications. Gene 496:1–7PubMedCrossRefGoogle Scholar
  37. Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19:671–672PubMedCrossRefGoogle Scholar
  38. Yang Z (1996) Maximum-likelihood models for combined analyses of multiple sequence data. J Mol Evol 42:587–596PubMedCrossRefGoogle Scholar
  39. Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573PubMedCrossRefGoogle Scholar
  40. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591PubMedCrossRefGoogle Scholar
  41. Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tim Ruder
    • 1
  • Kartik Sunagar
    • 2
    • 3
  • Eivind A. B. Undheim
    • 1
    • 4
  • Syed A. Ali
    • 1
    • 5
  • Tak-Cheung Wai
    • 6
  • Dolyce H. W. Low
    • 1
  • Timothy N. W. Jackson
    • 1
  • Glenn F. King
    • 4
  • Agostinho Antunes
    • 2
    • 3
  • Bryan G. Fry
    • 1
  1. 1.Venom Evolution LabSchool of Biological Sciences, University of QueenslandSt. LuciaAustralia
  2. 2.CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e AmbientalUniversidade do PortoPortoPortugal
  3. 3.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  4. 4.Institute for Molecular BiosciencesUniversity of QueenslandSt. LuciaAustralia
  5. 5.HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of KarachiKarachiPakistan
  6. 6.Department of Biology and Chemistry, State Key Laboratory in Marine PollutionCity University of Hong KongKowloonChina

Personalised recommendations