Journal of Molecular Evolution

, Volume 75, Issue 3–4, pp 79–91 | Cite as

Opsin Evolution in Damselfish: Convergence, Reversal, and Parallel Evolution Across Tuning Sites

  • Christopher M. HofmannEmail author
  • N. Justin Marshall
  • Kawther Abdilleh
  • Zil Patel
  • Ulrike E. Siebeck
  • Karen L. Carleton


The visual system plays a role in nearly every aspect of an organism’s life history, and there is a direct link between visual pigment phenotypes and opsin genotypes. In previous studies of African cichlid fishes, we found evidence for positive selection among some opsins, with sequence variation greatest for opsins producing the shortest and longest wavelength visual pigments. In this study, we examined opsin evolution in the closely related damselfish family (Pomacentridae), a group of reef fishes that are distributed widely and have a documented fossil record of at least 50 million years (MY). We found increased functional variation in the protein sequences of opsins at the short- and long-wavelength ends of the visual spectrum, in agreement with the African cichlids, despite an order of magnitude difference in the ages of the two radiations. We also reconstructed amino acid substitutions across opsin tuning sites. These reconstructions indicated multiple instances of parallel evolution, at least one definitive case of convergent evolution, and one evolutionary reversal. Our findings show that the amino acids at spectral tuning sites are labile evolutionarily, and that the same codons evolve repeatedly. These findings emphasize that the aquatic light environment can shape opsin sequence evolution. They further show that phylogenetic approaches can provide important insights into the mechanisms by which natural selection “tinkers” with phenotypes.


Opsin Ancestral state reconstruction Parallel evolution Pomacentridae 



We would like to thank Shaun Collin and the 2007 Marine Neurobiology course attendees as well as the Moreton Bay Research Station for their hospitality. Thanks also to Alan Goldizen for logistical support. This work was supported by the University of Maryland, NSF grant IOS 0841270 (KLC), and the Australian Research Council (NJM). Members of the University of Maryland cichlid group provided valuable suggestions, comments, and support throughout this project

Supplementary material

239_2012_9525_MOESM1_ESM.pdf (6.9 mb)
Supplementary material (PDF 7091 kb)


  1. Allen GR (1991) Damselfishes of the world. Aquariums Systems, MelleGoogle Scholar
  2. Bazinet AL, Cummings MP (2008) The lattice project: a grid research and production environment combining multiple grid computing models. In: Weber MHW (ed) Distributed & grid computing—science made transparent for everyone. Principles, applications and supporting communities., Marburg, pp 2–13Google Scholar
  3. Bazinet AL, Cummings MP (2011) Computing the tree of life—leveraging the power of desktop and service grids. In: Proceedings of the fifth workshop on desktop grids and volunteer computing systems (PCGrid), Anchorage, AKGoogle Scholar
  4. Bellwood DR (1996) The eocene fishes of Monte Bolca: the earliest coral reef fish assemblage. Coral Reefs 15:11–19Google Scholar
  5. Bowmaker JK (1995) The visual pigments of fish. Prog Retin Eye Res 15:1–31CrossRefGoogle Scholar
  6. Briscoe AD (2001) Functional diversification of lepidopteran opsins following gene duplication. Mol Biol Evol 18:2270–2279PubMedCrossRefGoogle Scholar
  7. Carleton KL, Spady TC, Cote RH (2005) Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis. J Mol Evol 61:75–89PubMedCrossRefGoogle Scholar
  8. Carleton KL, Spady TC, Streelman JT, Kidd MR, Mcfarland WN, Loew ER (2008) Visual sensitivities tuned by heterochronic shifts in opsin gene expression. BMC Biol 6:22PubMedCrossRefGoogle Scholar
  9. Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM (2007) The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol 24:1843–1852PubMedCrossRefGoogle Scholar
  10. Chang BSW, Crandall KA, Carulli JP, Hartl DL (1995) Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Mol Phylogenet Evol 4:31–43PubMedCrossRefGoogle Scholar
  11. Collin SP, Knight MA, Davies WL, Potter IC, Hunt DM, Trezise AEO (2003) Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol 13:R864–R865PubMedCrossRefGoogle Scholar
  12. Cooper WJ, Westneat MW (2009) Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches. BMC Evol Biol 9:24PubMedCrossRefGoogle Scholar
  13. Cooper WJ, Smith LL, Westneat MW (2009) Exploring the radiation of a diverse reef fish family: phylogenetics of the damselfishes (Pomacentridae), with new classifications based on molecular analyses of all genera. Mol Phylogenet Evol 52:1–16CrossRefGoogle Scholar
  14. Coughlin DJ, Strickler JR (1990) Zooplankton capture by a coral reef fish: an adaptive response to evasive prey. Environ Biol Fishes 29:35–42CrossRefGoogle Scholar
  15. Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94PubMedCrossRefGoogle Scholar
  16. Fasick JI, Robinson PR (1998) Mechanism of spectral tuning in the dolphin visual pigments. Biochemistry 37:433–438PubMedCrossRefGoogle Scholar
  17. Frederich B, Fabri G, Lepoint G, Vandewalle P, Parmentier E (2009) Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Recif of Toliara, Madagascar. Ichthyol Res 56:10–17CrossRefGoogle Scholar
  18. Genner MJ, Seehausen O, Lunt DH, Joyce DA, Shaw PW, Carvalho GR, Turner GF (2007) Age of cichlids: new dates for ancient lake fish radiations. Mol Biol Evol 24:1269–1282PubMedCrossRefGoogle Scholar
  19. Giegerich R, Meyer F, Schleiermacher C (1996) GeneFisher—software support for the detection of postulated genes. Proc Int Conf Intell Syst Mol Biol 4:68–77PubMedGoogle Scholar
  20. Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736PubMedGoogle Scholar
  21. Goldsmith TH (1990) Optimization, constraint, and history in the evolution of eyes. Q Rev Biol 65:281–322PubMedCrossRefGoogle Scholar
  22. Hart NS (2001) The visual ecology of avian photoreceptors. Prog Retin Eye Res 20:675–703PubMedCrossRefGoogle Scholar
  23. Hart NS, Hunt DM (2007) Avian visual pigments: characteristics, spectral tuning, and evolution. Am Nat 169:S7–S26PubMedCrossRefGoogle Scholar
  24. Hawryshyn CW, Moyer HD, Allison WT, Haimberge TJ, McFarland WN (2003) Multidimensional polarization sensitivity in damselfishes. J Comp Physiol A 189:213–220Google Scholar
  25. Hofmann CM, Carleton KL (2009) Gene duplication and differential gene expression play an important role in the diversification of visual pigments in fish. Integr Comp Biol 49:630–643PubMedCrossRefGoogle Scholar
  26. Hofmann CM, O’Quin KE, Marshall NJ, Cronin TW, Seehausen O, Carleton KL (2009) The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biol 7(12):e1000266PubMedCrossRefGoogle Scholar
  27. Hofmann CM, O’Quin KE, Marshall NJ, Carleton KL (2010) The relationship between lens transmission and opsin gene expression in cichlids from Lake Malawi. Vis Res 50:357–363PubMedCrossRefGoogle Scholar
  28. Hunt D, Dulai K, Partridge J, Cottrill P, Bowmaker J (2001) The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J Exp Biol 204:3333–3344PubMedGoogle Scholar
  29. Jacob F (1977) Evolution and tinkering. Science 196:1161–1166PubMedCrossRefGoogle Scholar
  30. Jang-Liaw NH, Tang KL, Hui C-F, Shao K-T (2002) Molecular phylogeny of 48 species of damselfishes (Perciformes: Pomacentridae) using 12S mtDNA sequences. Mol Phylogenet Evol 25:445–454PubMedCrossRefGoogle Scholar
  31. Jordan R, Howe D, Juanes F, Stauffer J Jr, Loew E (2004) Ultraviolet radiation enhances zooplanktivory rate in ultraviolet sensitive cichlids. Afr J Ecol 42:228–231CrossRefGoogle Scholar
  32. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCrossRefGoogle Scholar
  33. Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Gen 5:288–298CrossRefGoogle Scholar
  34. Konings A (2007) Lake Malawi cichlids in their natural habitat. Cichlid Press, El PasoGoogle Scholar
  35. Larmuseau MHD, Huyse T, Vancampenhout K, Houdt JKJV, Volckaert FAM (2010) High molecular diversity in the rhodopsin gene in closely related goby fishes: a role for visual pigments in adaptive speciation? Mol Phylogenet Evol 55:689–698PubMedCrossRefGoogle Scholar
  36. Loew ER, Lythgoe JN (1978) The ecology of cone pigments in teleost fishes. Vis Res 18:715–722PubMedCrossRefGoogle Scholar
  37. Losey GS, McFarland WN, Loew ER, Zamzow JP, Nelson PA, Marshall NJ (2003) Visual biology of Hawaiian coral reef fishes. I. Ocular transmission and visual pigments. Copeia 2003:433–454CrossRefGoogle Scholar
  38. Lythgoe J (1979) The ecology of vision. Clarendon Press, OxfordGoogle Scholar
  39. Maddison WP, Maddison DR (2008) Mesquite: a modular system for evolutionary analysis. Evolution 62(5):1103–1118CrossRefGoogle Scholar
  40. Manica A (2004) Parental fish change their cannibalistic behaviour in response to the cost-to-benefit ratio of parental care. Anim Behav 67:1015–1021CrossRefGoogle Scholar
  41. Marshall NJ (2000a) Communication and camouflage with the same ‘bright’ colours in reef fishes. Phil Trans R Soc B 355:1243–1248PubMedCrossRefGoogle Scholar
  42. Marshall NJ (2000b) The visual ecology of reef fish colors. In: Espmark Y, Amundsen Y, Rosenqvist G (eds) Animal signals. Signaling and signal design in animal communication. Tapir, Trondheim, pp 83–120Google Scholar
  43. Marshall NJ, Jennings K, McFarland WN, Loew ER, Losey GS (2003a) Visual biology of Hawaiian coral reef fishes. II. Colors of Hawaiian coral reef fish. Copeia 2003:455–466CrossRefGoogle Scholar
  44. Marshall NJ, Jennings K, McFarland WN, Loew ER, Losey GS (2003b) Visual biology of Hawaiian coral reef fishes. III. Environmental light and an integrated approach to the ecology of reef fish vision. Copeia 2003:467–480CrossRefGoogle Scholar
  45. McFarland WN, Loew ER (1994) Ultraviolet visual pigments in marine fishes of the family Pomacentridae. Vis Res 34:1393–1396PubMedCrossRefGoogle Scholar
  46. Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553PubMedCrossRefGoogle Scholar
  47. Nagai H, Terai Y, Sugawara T, Imai H, Nishihara H, Hori M, Okada N (2011) Reverse evolution in RH1 for adaptation of cichlids to water depth in Lake Tanganyika. Mol Biol Evol 28:1769–1776PubMedCrossRefGoogle Scholar
  48. Owens GL, Windsor DJ, Mui J, Taylor JS (2009) A fish eye out of water: ten visual opsins in the four-eyed fish, Anableps anableps. PLoS One 4:e5970PubMedCrossRefGoogle Scholar
  49. O’Quin KE, Hofmann CM, Hofmann HA, Carleton KL (2010) Parallel evolution of opsin gene expression in African cichlid fishes. Mol Biol Evol 27:2839–2854PubMedCrossRefGoogle Scholar
  50. O’Quin KE, Smith AR, Sharma A, Carleton KL (2011) New evidence for the role of heterochrony in the repeated evolution of cichlid opsin expression. Evol Dev 13:193–203PubMedCrossRefGoogle Scholar
  51. Partridge JC, Shand J, Archer SN, Lythgoe JN, Groningen-Luyben WAHMv (1989) Interspecific variation in the visual pigments of deep-sea fishes. J Comp Physiol A 164:513–529PubMedCrossRefGoogle Scholar
  52. Posada D, Crandall K (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  53. Quenouille B, Bermingham E, Planes S (2004) Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 31:66–88PubMedCrossRefGoogle Scholar
  54. Randall JE, Allen GR, Steene RC (1996) Fishes of the great barrier reef and coral sea. University of Hawai’i Press, HonoluluGoogle Scholar
  55. Reilly J (2001) Euthanasia of animals used for scientific purposes. Australian and New Zealand Council for the Care of Animals in Research and Teaching, AdelaideGoogle Scholar
  56. Rennison DJ, Owens GL, Taylor JS (2012) Opsin gene duplication and divergence in ray-finned fish. Mol Phyl Evol 62:986–1008CrossRefGoogle Scholar
  57. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Meth Prot: Meth Mol Biol. Humana Press, Totowa, pp 365–386Google Scholar
  58. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, Sluijs Ivd, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626PubMedCrossRefGoogle Scholar
  59. Shen Y-Y, Liu J, Irwin DM, Zhang Y-P (2010) Parallel and convergent evolution of the dim-light vision gene RH1in bats (Order: Chiroptera). PLoS One 5:e8838PubMedCrossRefGoogle Scholar
  60. Siebeck UE, Marshall NJ (2001) Ocular media transmission of coral reef fish—can coral reef fish see ultraviolet light? Vis Res 41:133–149PubMedCrossRefGoogle Scholar
  61. Siebeck UE, Marshall NJ (2007) Potential ultraviolet vision in pre-settlement larvae and settled reef fish—a comparison across 23 families. Vis Res 47:2337–2352PubMedCrossRefGoogle Scholar
  62. Siebeck UE, Wallis GM, Litherland L (2008) Colour vision in coral reef fish. J Exp Biol 211:354–360PubMedCrossRefGoogle Scholar
  63. Siebeck UE, Parker AN, Sprenger D, Mathger LM, Wallis G (2010) A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr Biol 20:1–4CrossRefGoogle Scholar
  64. Smith AR, Carleton KL (2010) Allelic variation in Malawi cichlid fish opsins: a tale of two genera. J Mol Evol 70:593–604PubMedCrossRefGoogle Scholar
  65. Spady TC, Seehausen O, Loew ER, Jordan RC, Kocher TD, Carleton KL (2005) Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Mol Biol Evol 22:1412–1422PubMedCrossRefGoogle Scholar
  66. Spady TC, Parry JWL, Robinson PR, Hunt DM, Bowmaker JK, Carleton KL (2006) Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol Biol Evol 23:1538–1547PubMedCrossRefGoogle Scholar
  67. Sugawara T, Terai Y, Okada N (2002) Natural selection of the rhodopsin gene during the adaptive radiation of east african great lakes cichlid fishes. Mol Biol Evol 19:1807–1811PubMedCrossRefGoogle Scholar
  68. Sugawara T, Terai Y, Imai H, Turner GF, Koblmüller S, Sturmbauer C, Shichida Y, Okada N (2005) Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proc Natl Acad Sci USA 102:5448–5453PubMedCrossRefGoogle Scholar
  69. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, SunderlandGoogle Scholar
  70. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  71. Tang KL (2001) Phylogenetic relationships among Damselfishes (Teleostei: Pomacentridae) as determined by mitochondrial DNA data. Copeia 2001:591–601CrossRefGoogle Scholar
  72. Terai Y, Mayer WE, Klein J, Tichy H, Okada N (2002) The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. Proc Natl Acad Sci USA 99:15501–15506PubMedCrossRefGoogle Scholar
  73. Wald G (1968) The molecular basis of visual excitation. Nature 219:800–807PubMedCrossRefGoogle Scholar
  74. Ward MN, Churcher AM, Dick KJ, Laver CR, Owens GL, Polack MD, Ward PR, Breden F, Taylor JS (2008) The molecular basis of color vision in colorful fish: four long wave-sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites. BMC Evol Biol 8:210PubMedCrossRefGoogle Scholar
  75. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591PubMedCrossRefGoogle Scholar
  76. Yang Z, Kumar S, Nei M (1995) A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141:1641–1650PubMedGoogle Scholar
  77. Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118PubMedCrossRefGoogle Scholar
  78. Yokoyama S (2000) Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 19:385–419PubMedCrossRefGoogle Scholar
  79. Yokoyama S (2002) Molecular evolution of color vision in vertebrates. Gene 300:69–78Google Scholar
  80. Yokoyama S (2008) Evolution of dim-light and color vision pigments. Annu Rev Genomics Hum Genet 9:259–282PubMedCrossRefGoogle Scholar
  81. Yokoyama S, Yokoyama R (1996) Adaptive evolution of photoreceptors and visual pigments in vertebrates. Annu Rev Ecol Syst 27:543–567CrossRefGoogle Scholar
  82. Yokoyama S, Tada T, Zhang H, Britt L (2008) Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci USA 105:13480–13485PubMedCrossRefGoogle Scholar
  83. Zhang J, Kumar S (1997) Detection of convergent and parallel evolution at the amino acid sequence level. Mol Biol Evol 14:527–536PubMedCrossRefGoogle Scholar
  84. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. The University of Texas at AustinGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Christopher M. Hofmann
    • 1
    Email author
  • N. Justin Marshall
    • 2
  • Kawther Abdilleh
    • 1
  • Zil Patel
    • 1
  • Ulrike E. Siebeck
    • 3
  • Karen L. Carleton
    • 1
  1. 1.Department of BiologyUniversity of MarylandCollege ParkUSA
  2. 2.Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
  3. 3.University of QueenslandBrisbaneAustralia

Personalised recommendations