Skip to main content

Quantifying the Elevation of Mitochondrial DNA Evolutionary Substitution Rates Over Nuclear Rates in the Intertidal Copepod Tigriopus californicus

Abstract

Mitochondrial DNA (mtDNA) genomes generally evolve rapidly in animals, but considerable variation in the rates of evolution of mtDNA occurs among taxa. Higher levels of mutation will tend to increase the amount of polymorphism, which should also scale with population size, but there are mixed signals from previous studies on the evolutionary outcomes of the interactions of these processes. The copepod Tigriopus californicus provides an interesting model in which to study the evolution of mtDNA because it has high levels of divergence among populations and there is the suggestion that this divergence could be involved in reproductive isolation. This species also appears to have an elevated mtDNA substitution rate, but previous studies did not provide an accurate measurement. This article examines the rate of mtDNA substitution versus nuclear substitution in T. californicus and finds that the mtDNA rate for synonymous sites averages 55-fold higher, a level that exceeds the rates found in most other invertebrates. Levels of polymorphism are also examined in both mtDNA and nuclear genes, and it is shown that the effective population size of mtDNA genes is much lower than that of nuclear genes. In addition, no correlation between polymorphism in mtDNA and nuclear genes is found across populations, which suggest factors other than demography may shape polymorphism in this species. The results from this study suggest that mtDNA is evolving at a very rapid rate in this copepod species, and this could increase the likelihood that mtDNA evolution is involved in the generation of reproductive isolation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    PubMed  Article  Google Scholar 

  • Barreto FS, Moy GW, Burton RS (2011) Interpopulation patterns of divergence and selection across the transcriptome of the copepod Tigriopus californicus. Mol Ecol 20:560–572

    PubMed  Article  Google Scholar 

  • Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572

    PubMed  Article  CAS  Google Scholar 

  • Breeuwer JAJ, Werren JH (1995) Hybrid breakdown between two haplodiploid species: the role of nuclear and cytoplasmic genes. Evolution 49:705–717

    Article  Google Scholar 

  • Burton RS (1998) Intraspecific phylogeography across the point conception biogeographic boundary. Evolution 52:734–745

    Article  Google Scholar 

  • Burton RS, Ellison CK, Harrison JS (2006) The sorry state of F2 hybrids: consequences of rapid mitochondrial DNA evolution in allopatric populations. Am Nat 168:S14–S24

    PubMed  Article  Google Scholar 

  • Burton RS, Byrne RJ, Rawson PD (2007) Three divergent mitochondrial genomes from California populations of the copepod Tigriopus californicus. Gene 403:53–59

    PubMed  Article  CAS  Google Scholar 

  • Chou J-Y, Hung Y-S, Lin K-H, Lee H-Y, Leu J-Y (2010) Multiple molecular mechanisms cause reproductive isolation between three yeast species. PLoS Biol 8:e1000432

    PubMed  Article  Google Scholar 

  • Denis F, Ravallec R, Pavillon JF, Wormhoudt AV (2009) Genetic differentiation of Atlantic populations of the intertidal copepod Tigriopus brevicornis. Sci Mar 73:579–587

    Article  CAS  Google Scholar 

  • Denver DR, Morris K, Lynch M, Vassilieva LL, Thomas WK (2000) High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. Science 289:2342–2344

    PubMed  Article  CAS  Google Scholar 

  • Dybdahl MF (1994) Extinction, recolonization, and the genetic structure of tidepool copepod popululations. Evol Ecol 8:113–124

    Article  Google Scholar 

  • Edmands S (2001) Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol Ecol 10:1743–1750

    PubMed  Article  CAS  Google Scholar 

  • Ellison CK, Burton RS (2006) Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus. Evolution 60:1382–1391

    PubMed  CAS  Google Scholar 

  • Ellison CK, Burton RS (2008a) Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution 62:631–638

    PubMed  Article  Google Scholar 

  • Ellison CK, Burton RS (2008b) Genotype-dependent variation of mitochondrial transcriptional profiles in interpopulation hybrids. Proc Natl Acad Sci USA 105:15831–15836

    PubMed  Article  CAS  Google Scholar 

  • Ellison CK, Niehuis O, Gadau J (2008) Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. J Evol Biol 21:1844–1851

    PubMed  Article  CAS  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    PubMed  CAS  Google Scholar 

  • Fu YX, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Haag-Liautard C, Coffey N, Houle D, Lynch M, Charlesworth B, Keightley PD (2008) Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol 6:e204

    PubMed  Article  Google Scholar 

  • Handschumacher L, Steinarsdóttir MB, Edmands S, Ingólfsson A (2010) Phylogeography of the rock-pool copepod Tigriopus brevicornis (Harpacticoida) in the northern North Atlantic, and its relationship to other species of the genus. Mar Biol 157:1357–1366

    Article  Google Scholar 

  • Harrison JS, Burton RS (2006) Tracing hybrid incompatibilities to single amino acid substitutions. Mol Biol Evol 23:559–564

    PubMed  Article  CAS  Google Scholar 

  • Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24

    PubMed  Article  Google Scholar 

  • Hoelzel AR, Green A (1992) Analysis of population-level variation by sequencing PCR-amplified DNA. In: Hoelzel AR (ed) Practical approach series: molecular genetic analysis of populations. Oxford University Press, New York, pp 159–187

    Google Scholar 

  • Johnson JP, Cruickshank RH, Adams RJ, Smith VS, Page RDM, Clayton DH (2003) Dramatically elevated rate of mitochondrial substitution in lice (Insecta: Phthiraptera). Mol Phylogen Evol 26:231–242

    Article  CAS  Google Scholar 

  • Jung SO, Lee YM, Park TJ, Park HG, Hagiwara A, Leung KMY, Dahms HU, Lee W, Lee JS (2006) The complete mitochondrial genome of the intertidal copepod Tigriopus sp. (Copepoda, Harpacticidae) from Korea and phylogenetic considerations. J Exp Mar Biol Ecol 333:251–262

    Article  CAS  Google Scholar 

  • Lee H-Y, Chou J-Y, Cheong L, Chang N-H, Yang S-Y, Leu J-Y (2008) Incompatibility of nuclear and mitochondrial genomes caused hybrid sterility between two yeast species. Cell 135:1065–1073

    PubMed  Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    PubMed  Article  CAS  Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727–1733

    PubMed  Article  CAS  Google Scholar 

  • Lynch M, Sung W, Morris K, Coffey N, Landry CR, Dopman EB, Dickenson WJ, Okamoto K, Kulkarni S, Hartl DL, Thomas WK (2008) A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci USA 105:9272–9277

    PubMed  Article  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    PubMed  Article  CAS  Google Scholar 

  • Nabholz B, Glémin S, Galtier N (2008) Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol Biol Evol 25:120–130

    PubMed  Article  CAS  Google Scholar 

  • Nabholz B, Glémin S, Galtier N (2009) The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol Biol 9:54

    PubMed  Article  Google Scholar 

  • Niehuis O, Judson AK, Gadau J (2008) Cytonuclear genic incompatibilities cause increased mortality in male F2 hybrids of Nasonia giraulti and N. vitripennis. Genetics 178:413–426

    PubMed  Article  CAS  Google Scholar 

  • Oliveira DCSG, Raychoudhury R, Lavrov DV, Werren JH (2008) Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol Biol Evol 25:2167–2180

    PubMed  Article  CAS  Google Scholar 

  • Palmer JD, Herbon A (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28:87–97

    PubMed  Article  CAS  Google Scholar 

  • Powlick JJ (1998) Seasonal abundance and population flux of Tigriopus californicus (Copepoda: Harpacticoida) in Barkley sound, British Columbia. J Mar Biol Assoc UK 78:467–481

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/, ISBN 3-900051-07-0

  • Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:645–653

    PubMed  Article  Google Scholar 

  • Rawson PD, Burton RS (2002) Functional coadaptation between cytochrome c and cytochrome c oxidase within allopatric populations of a marine copepod. Proc Natl Acad Sci USA 99:12955–12958

    PubMed  Article  CAS  Google Scholar 

  • Rawson PD, Burton RS (2006) Molecular evolution at the cytochrome c oxidase subunit 2 gene among divergent populations of the intertidal copepod, Tigriopus californicus. J Mol Evol 62:753–764

    PubMed  Article  CAS  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    PubMed  Article  CAS  Google Scholar 

  • Rocha-Olivares A, Fleeger JW, Flotz DW (2001) Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Mol Biol Evol 18:1088–1102

    PubMed  Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    PubMed  Article  CAS  Google Scholar 

  • Tajima F (1989) Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Willett CS (2011) Complex deleterious interactions associated with malic enzyme may contribute to reproductive isolation in the copepod Tigriopus californicus. PLoS One 6:e21177

    PubMed  Article  CAS  Google Scholar 

  • Willett CS, Berkowitz JN (2007) Viability effects and not meiotic drive cause dramatic departures from Mendelian inheritance for malic enzyme in hybrids of Tigriopus californicus populations. J Evol Biol 20:1196–1205

    PubMed  Article  CAS  Google Scholar 

  • Willett CS, Burton RS (2001) Viability of cytochrome c depends on cytoplasmic background in Tigriopus californicus. Evolution 55:1592–1599

    PubMed  CAS  Google Scholar 

  • Willett CS, Burton RS (2002) Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod T. californicus. Comp Biochem Physiol B 132:739–750

    PubMed  Article  Google Scholar 

  • Willett CS, Burton RS (2003) Environmental influences on epistatic interactions: viabilities of cytochrome c genotypes in interpopulation crosses. Evolution 57:2286–2292

    PubMed  Google Scholar 

  • Willett CS, Burton RS (2004) Evolution of interacting proteins in the mitochondrial electron transport system in a marine copepod. Mol Biol Evol 21:443–453

    PubMed  Article  CAS  Google Scholar 

  • Willett CS, Ladner JT (2009) Investigations of fine-scale phylogeography in Tigriopus californicus reveal historical patterns of population divergence. BMC Evol 9:139

    Article  Google Scholar 

  • Xu S, Schaak S, Seyfert A, Choi E, Lynch M, Cristescu ME (2012) High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol Biol Evol 29:763–769

    PubMed  Article  CAS  Google Scholar 

  • Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank N. Gindele, A. Craven, and E. Burch for their assistance with data collection and analysis; and T. Lima and three reviewers for their useful comments on this article. The study was supported by the National Science Foundation Grant DEB-0821003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Willett.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Willett, C.S. Quantifying the Elevation of Mitochondrial DNA Evolutionary Substitution Rates Over Nuclear Rates in the Intertidal Copepod Tigriopus californicus . J Mol Evol 74, 310–318 (2012). https://doi.org/10.1007/s00239-012-9508-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-012-9508-1

Keywords

  • Population genetics
  • Substitution rates
  • Polymorphism
  • Effective gene numbers
  • Copepods