Skip to main content
Log in

Role of Everlasting Triplet Expansions in Protein Evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Analysis of occurrence of simple amino acid repeats in large ensemble of prokaryotic and eukaryotic sequences reveals that nearly all amino acids found in the repeats belong to those which have in their codon repertoires aggressively expanding triplets, all of three known pathologically expanding classes GCU (GCU, CUG, UGC, AGC, GCA, CAG), GCC (GCC, CCG, CGC, GGC, GCG, CGG), and AAG (AAG, AGA, GAA, CTT, TTC, TCT). This is observed especially clear in the first exons of proteins of higher eukaryotes. The data are interpreted as manifestation of everlasting triplet expansions, which, presumably, started from the very origin of the triplet code. The spontaneous expansions continued to occur all the way during evolution, leaving their footprints in the protein-coding sequences as still visible simple amino acid repeats, as preferred triplets encoding the repeats, and as preferred codons in the codon usage tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas AK, Lichtman AH (2003) Cellular and molecular immunology, 5th edn. Saunders, Philadelphia

    Google Scholar 

  • Alba MM, Guigo R (2004) Comparative analysis of amino acid repeats in rodents and humans. Genome Res 14:549–554

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Bacolla A, Larson JE, Collins JR, Li J, Milosavljevic A, Stenson PD, Cooper DN, Wells RD (2008) Abundance and length of simple repeats in vertebrate genomes are determined by their structural properties. Genome Res 18:1545–1553

    Article  PubMed  CAS  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Ann Rev Biochem 72:291–336

    Article  PubMed  CAS  Google Scholar 

  • Brown LY, Brown SA (2004) Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet 20:51–58

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  PubMed  CAS  Google Scholar 

  • Faux NG, Bottomley SP, Lesk AM, Irving JA, Morrison JR, de la Banda MG, Whisstock JC (2005) Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res 15:537–551

    Article  PubMed  CAS  Google Scholar 

  • Faux NG, Huttley GA, Mahmood K, Webb GI, de la Banda MG, Whisstock JC (2007) RCPdb: an evolutionary classification and codon usage database for repeat-containing proteins. Genome Res 17:1118–1127

    Article  PubMed  CAS  Google Scholar 

  • Fondon JW, Garner HR (2004) Molecular origins of rapid and continuous morphological evolution. Proc Natl Acad Sci USA 101:18058–18063

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP, Alireza GS, Zhaxybayeva O, Olendzenski L, Hilario E (2002) Inteins: structure, function, and evolution. Ann Rev Microbiol 56:263–287

    Article  CAS  Google Scholar 

  • Haerty W, Golding GB (2010) Genome-wide evidence for selection acting on single amino acid repeats. Genome Res 20:755–760

    Article  PubMed  CAS  Google Scholar 

  • Hamada H, Petrino MG, Kakunaga T, Seidman M, Stollar BD (1984) Enhanced gene expression by the poly(dT-dG) poly(dC-dA) sequence. Mol Cell Biol 4:2622–2630

    PubMed  CAS  Google Scholar 

  • Huntley MA, Clark AG (2007) Evolutionary analysis of amino acid repeats across the genomes of 12 drosophila species. Mol Biol Evol 24:2598–2609

    Article  PubMed  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–123

    Google Scholar 

  • Karlin S, Brocchieri L, Bergman A, Mrazek J, Gentles AJ (2002) Amino acid runs in eukaryotic proteomes and disease associations. Proc Nat Acad Sci USA 99:333–338

    Article  PubMed  CAS  Google Scholar 

  • Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22:253–259

    Article  PubMed  CAS  Google Scholar 

  • King DG (1994) Triple repeat DNA as a highly mutable regulatory mechanism. Science 263:595–596

    PubMed  CAS  Google Scholar 

  • Kozlowski P, de Mezer M, Krzyzosiak WJ (2010) Trinucleotide repeats in human genome and exome. Nucl Acids Res 38:4027–4039

    Article  PubMed  CAS  Google Scholar 

  • Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev 6:386–398

    Article  CAS  Google Scholar 

  • Matula M, Kypr J (1999) Nucleotide sequences flanking dinucleotide microsatellites in the human, mouse and Drosophila genomes. J Biomol Struct Dynam 17:275–280

    CAS  Google Scholar 

  • Mazrimas JA, Hatch FT (1972) Possible relationship between satellite DNA and evolution of kangaroo rat species (genus Dipodomys). Nat New Biol 240:102

    Article  PubMed  CAS  Google Scholar 

  • Mirkin SM (2006) DNA structures, repeat expansions and human hereditary disorders. Curr Opin Struct Biol 16:351–358

    Article  PubMed  CAS  Google Scholar 

  • Mularoni L, Ledda A, Toll-Riera M, Mar Albà M (2010) Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Res 20:745–754

    Article  PubMed  CAS  Google Scholar 

  • Ohshima K, Kang S, Larson JE, Wells RD (1996) Cloning, characterization, and properties of seven triplet repeat DNA sequences. J Biol Chem 271:16773–16783

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  PubMed  CAS  Google Scholar 

  • Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  PubMed  CAS  Google Scholar 

  • Pearson CE, Edamura KN, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6:729–742

    Article  PubMed  CAS  Google Scholar 

  • Pino S, Trifonov EN, Di Mauro E (in press) On the observable transition to living matter. Genomics Proteomics Bioinform

  • Richards RI, Sutherland GR (1997) Dynamic mutation: possible mechanisms and significance in human disease. Trends Biochem Sci 22:432–436

    Article  PubMed  CAS  Google Scholar 

  • Siwach P, Pophaly SD, Ganesh S (2006) Genomic and evolutionary insights into genes encoding proteins with single amino acid repeats. Mol Biol Evol 23:1357–1369

    Article  PubMed  CAS  Google Scholar 

  • Trifonov EN (1989) The multiple codes of nucleotide sequences. Bull Math Biol 51:417–432

    PubMed  CAS  Google Scholar 

  • Trifonov EN (1996) Interfering contexts of regulatory sequence elements. CABIOS 12:423–429

    PubMed  CAS  Google Scholar 

  • Trifonov EN (2000) Consensus temporal order of amino acids and evolution of the triplet code. Gene 261:139–151

    Article  PubMed  CAS  Google Scholar 

  • Trifonov EN (2004) The triplet code from first principles. J Biomol Struct Dynam 22:1–11

    CAS  Google Scholar 

  • Trifonov EN (2006) Early molecular evolution. Isr J Ecol Evol 52:375–387

    Article  Google Scholar 

  • Trifonov EN (2010) Towards reconstruction of molecular origin of life. J Cosmol 10:3374–3380

    Google Scholar 

  • Trifonov EN, Bettecken T (1997) Sequence fossils, triplet expansion, and reconstruction of earliest codons. Gene 205:1–6

    Article  PubMed  CAS  Google Scholar 

  • Usdin K (2008) The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 18:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Ann Rev Neurosci 23:217–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant 710/02-19.0 of the Israeli Science Foundation and by an EU grant QLG2-CT-2002-01298.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward N. Trifonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koren, Z., Trifonov, E.N. Role of Everlasting Triplet Expansions in Protein Evolution. J Mol Evol 72, 232–239 (2011). https://doi.org/10.1007/s00239-010-9425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9425-0

Keywords

Navigation