Skip to main content
Log in

Evolution of the Relaxin/Insulin-like Gene Family in Placental Mammals: Implications for Its Early Evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The relaxin (RLN) and insulin-like (INSL) gene family is a group of genes involved in a variety of physiological roles that includes bone formation, testicular descent, trophoblast development, and cell differentiation. This family appears to have expanded in vertebrates relative to non-vertebrate chordates, but the relative contribution of whole genome duplications (WGDs) and tandem duplications to the observed diversity of genes is still an open question. Results from our comparative analyses favor a model of divergence post vertebrate WGDs in which a single-copy progenitor found in the last common ancestor of vertebrates experienced two rounds of WGDs before the functional differentiation that gave rise to the RLN and INSL genes. One of the resulting paralogs was subsequently lost, resulting in three proto-RLN/INSL genes on three separate chromosomes. Subsequent rounds of tandem gene duplication and divergence originated the set of paralogs found on a given cluster in extant vertebrates. Our study supports the hypothesis that differentiation of the RLN and INSL genes took place independently in each RLN/INSL cluster after the two WGDs during the evolutionary history of vertebrates. In addition, we show that INSL4 represents a relatively old gene that has been apparently lost independently in all Euarchontoglires other than apes and Old World monkeys, and that RLN2 derives from an ape-specific duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bathgate RAD, Samuel CS, Burazin TCD, Gundlach AL, Tregear GW (2003) Relaxin: new peptides, receptors and novel actions. Trends Endocrinol Metab 14:207–213

    Article  CAS  PubMed  Google Scholar 

  • Bieche I, Laurent A, Laurendeau I, Duret L, Giovangrandi Y, Frendo J-L, Olivi M, Fausser J-L, Evain-Brion D, Vidaud M (2003) Placenta-specific INSL4 expression is mediated by a human endogenous retrovirus element. Biol Reprod 68:1422–1429

    Article  CAS  PubMed  Google Scholar 

  • Chan SJ, Steiner DF (2000) Insulin through the ages: phylogeny of a growth promoting and metabolic regulatory hormone. Am Zool 40:222–231

    Google Scholar 

  • de Pablo F, de la Rosa EJ (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18:143–150

    Article  PubMed  Google Scholar 

  • Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:314

    Article  Google Scholar 

  • Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S (2005) ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res 15:330–340

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Good-Avila SV, Yegorov S, Harron S, Bogerd J, Glen P, Ozon J, Wilson BC (2009) Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, and expression analysis. BMC Evol Biol 9:293

    Article  PubMed  Google Scholar 

  • Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598

    Article  CAS  PubMed  Google Scholar 

  • Hahn MW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100:605–617

    Article  CAS  PubMed  Google Scholar 

  • Hsu SYT (2003) New insights into the evolution of the relaxin–LGR signaling system. Trends Endocrinol Metab 14:303–309

    Article  CAS  PubMed  Google Scholar 

  • Jobb G, Haeseler AV, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18

    Article  PubMed  Google Scholar 

  • Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64

    Article  CAS  PubMed  Google Scholar 

  • Kuraku S, Meyer A, Kuratani S (2009) Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after. Mol Biol Evol 26:47–59

    Article  CAS  PubMed  Google Scholar 

  • Lassmann T, Sonnhammer ELL (2005) Automatic assessment of alignment quality. Nucleic Acids Res 33:7120–7128

    Article  CAS  PubMed  Google Scholar 

  • Lassmann T, Frings O, Sonnhammer ELL (2009) Kalign2: high performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res 37:858–865

    Article  CAS  PubMed  Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704

    Article  CAS  PubMed  Google Scholar 

  • Nagamatsu S, Chan SJ, Falkmer S, Steiner DF (1991) Evolution of the insulin gene superfamily. Sequence of a preproinsulin-like growth factor cDNA from the Atlantic hagfish. J Biol Chem 266:2397–2402

    CAS  PubMed  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York

    Google Scholar 

  • Olinski RP, Dahlberg C, Thorndyke M, Hallbook F (2006a) Three insulin–relaxin-like genes in Ciona intestinalis. Peptides 27:2535–2546

    Article  CAS  PubMed  Google Scholar 

  • Olinski RP, Lundin L-G, Hallbook F (2006b) Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin–relaxin gene family. Mol Biol Evol 23:10–22

    Article  CAS  PubMed  Google Scholar 

  • Park J-I, Semyonov J, Chang CL, Yi W, Warren W, Hsu SYT (2008a) Origin of INSL3-mediated testicular descent in therian mammals. Genome Res 18:974–985

    Article  CAS  PubMed  Google Scholar 

  • Park J-I, Semyonov J, Yi W, Chang CL, Hsu SYT (2008b) Regulation of receptor signaling by relaxin A chain motifs: derivation of pan-specific and LGR7-specific human relaxin analogs. J Biol Chem 283:32099–32109

    Article  CAS  PubMed  Google Scholar 

  • Reinecke M, Collet C (1998) The phylogeny of the insulin-like growth factors. Int Rev Cytol 183:1–94

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sherwood OD (2004) Relaxin’s physiological roles and other diverse actions. Endocr Rev 25:205–234

    Article  CAS  PubMed  Google Scholar 

  • Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508

    Article  PubMed  Google Scholar 

  • Steiper ME, Young NM (2009) Primates (Primates). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 482–486

    Google Scholar 

  • Subramanian AR, Kaufmann M, Morgenstern B (2008) DIALIGN-TX: greedy and progressive approaches for segment-based multiple sequence alignment. Algorithms Mol Biol 3:6

    Article  PubMed  Google Scholar 

  • Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:609–612

    Article  Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  CAS  PubMed  Google Scholar 

  • Wentworth BM, Schaefer IM, Villa-Komaroff L, Chirgwin JM (1986) Characterization of the two nonallelic genes encoding mouse preproinsulin. J Mol Evol 23:305–312

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson TN, Speed TP, Tregear GW, Bathgate RAD (2005) Evolution of the relaxin-like peptide family. BMC Evol Biol 5:14

    Article  PubMed  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by grants to JCO from the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 11080181), Programa Bicentenario de Ciencia y Tecnología (PSD89), and the Oliver Pearson Award from the American Society of Mammalogists (ASM). The authors also thank Dominique Alò, Amy Runck and Zachary A. Cheviron for critical comments, and Yves Van de Peer and two anonymous reviewers for helpful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Opazo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, F.G., Opazo, J.C. Evolution of the Relaxin/Insulin-like Gene Family in Placental Mammals: Implications for Its Early Evolution. J Mol Evol 72, 72–79 (2011). https://doi.org/10.1007/s00239-010-9403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9403-6

Keywords

Navigation