Skip to main content
Log in

Evolution of Conus Peptide Genes: Duplication and Positive Selection in the A-Superfamily

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

A remarkable diversity of venom peptides is expressed in the genus Conus (known as “conotoxins” or “conopeptides”). Between 50 and 200 different venom peptides can be found in a single Conus species, each having its own complement of peptides. Conopeptides are encoded by a few gene superfamilies; here we analyze the evolution of the A-superfamily in a fish-hunting species clade, Pionoconus. More than 90 conopeptide sequences from 11 different Conus species were used to build a phylogenetic tree. Comparison with a species tree based on standard genes reveals multiple gene duplication events, some of which took place before the Pionoconus radiation. By analysing several A-conopeptides from other Conus species recorded in GenBank, we date the major duplication events after the divergence between fish-hunting and non-fish-hunting species. Furthermore, likelihood approaches revealed strong positive selection; the magnitude depends on which A-conopeptide lineage and amino-acid locus is analyzed. The four major A-conopeptide clades defined are consistent with the current division of the superfamily into families and subfamilies based on the Cys pattern. The function of three of these clades (the κA-family, the α4/7-subfamily, and α3/5-subfamily) has previously been characterized. The function of the remaining clade, corresponding to the α4/4-subfamily, has not been elucidated. This subfamily is also found in several other fish-hunting species clades within Conus. The analysis revealed a surprisingly diverse origin of α4/4 conopeptides from a single species, Conus bullatus. This phylogenetic approach that defines different genetic lineages of Conus venom peptides provides a guidepost for identifying conopeptides with potentially novel functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar MB, Chan de la Rosa RA, Falcon A, Olivera BM, Heimer de la Cotera EP (2009) Peptide pal9a from the venom of the turrid snail Polystira albida from the Gulf of Mexico: purification, characterization, and comparison with P-conotoxin-like (framework IX) conoidean peptides. Peptides 30:467–476

    Article  CAS  PubMed  Google Scholar 

  • Azam L, Dowell C, Watkins M, Stitzel JA, Olivera BM, McIntosh JM (2005) Alpha-conotoxin BuIA, a novel peptide from Conus bullatus, distinguishes among neuronal nicotinic acetylcholine receptors. J Biol Chem 280:80–87

    CAS  PubMed  Google Scholar 

  • Conticello SG, Pilpel Y, Glusman G, Fainzilber M (2000) Position-specific codon conservation in hypervariable gene families. Trends Genet 16:57–59

    Article  CAS  PubMed  Google Scholar 

  • Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M (2001) Mechanisms for evolving hypervariability: the case of conopeptides. Mol Biol Evol 18:120–131

    CAS  PubMed  Google Scholar 

  • Doley R, Pahari S, Mackessy SP, Manjunatha Kini R (2008) Accelerated exchange of exon segments in viperid three-finger toxin genes (Sistrurus catenatus edwardsii; Desert Massasauga). BMC Evol Biol 8:196

    Article  PubMed  Google Scholar 

  • Duda TF (2008) Differentiation of venoms of predatory marine gastropods: divergence of orthologous toxin genes of closely related Conus species with different dietary specializations. J Mol Evol 67:315–321

    Article  CAS  PubMed  Google Scholar 

  • Duda TF, Kohn AJ (2005) Species-level phylogeography and evolutionary history of the hyperdiverse marine gastropod genus Conus. Mol Phylogenet Evol 34:257–272

    Article  PubMed  Google Scholar 

  • Duda TF, Palumbi SR (1999) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc Natl Acad Sci USA 96:6820–6823

    Article  CAS  PubMed  Google Scholar 

  • Duda TF, Palumbi SR (2000) Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails. Mol Biol Evol 17:1286–1293

    CAS  PubMed  Google Scholar 

  • Duda TF, Palumbi SR (2004) Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus Conus. Proc Roy Soc Lond Ser B Biol Sci 271:1165–1174

    Article  CAS  Google Scholar 

  • Duda TF, Remigio A (2008) Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails. Mol Ecol 17:3018–3032

    Article  CAS  PubMed  Google Scholar 

  • Durand D, Halldorsson BV, Vernot B (2006) A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol 13:320–335

    Article  CAS  PubMed  Google Scholar 

  • Espiritu DJD, Watkins M, Dia-Monje V, Cartier GE, Cruz LE, Olivera BM (2001) Venomous cone snails: molecular phylogeny and the generation of toxin diversity. Toxicon 39:1899–1916

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Hall B (2001) MrBayes: bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Friedman R (2008) Codon-based tests of positive selection, branch lengths, and the evolution of mammalian immune system genes. Immunogenetics 60:495–506

    Article  CAS  PubMed  Google Scholar 

  • Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:1–17

    Article  Google Scholar 

  • Kohn AJ (1990) Tempo and mode of evolution in Conidae. Malacologia 32:55–67

    Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  • Olivera BM (2006) Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem 281:31173–31177

    Article  CAS  PubMed  Google Scholar 

  • Olivera BM (2008) Venom peptides from Conus and other Conoideans: prospects and perspectives. In: Benoit E, Goudey-Perrière F, Marchot P, Servent D (eds) Toxines et fonctions cholinergiques neuronales et non neuronales. Librairie Lavoisier, Cachan

    Google Scholar 

  • Olivera BM, Teichert RW (2007) Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery. Mol Interv 7:251–260

    Article  CAS  PubMed  Google Scholar 

  • Santos AD, Mc Intosh JM, Hillyard DR, Cruz LE, Olivera BM (2004) The A-superfamily of conotoxins: structural and functional divergence. J Biol Chem 279:17596–17606

    Article  CAS  PubMed  Google Scholar 

  • Terlau H, Shon KJ, Grilley M, Stocker M, Stühmer W, Olivera BM (1996) Strategy for rapid immobilization of prey by a fish-hunting cone snail. Nature 381:148–151

    Article  CAS  PubMed  Google Scholar 

  • Vernot B, Stolzer M, Goldman A, Durand D (2008) Reconciliation with non-binary species trees. J Comput Biol 15:981–1006

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Jiang H, Hana Y-H, Yuan D-D, Chi C-W (2008) Two different groups of signal sequence in M-superfamily conotoxins. Toxicon 51:813–822

    Article  CAS  PubMed  Google Scholar 

  • Watkins M, Hillyard DR, Olivera BM (2006) Genes expressed in a turrid venom duct: divergence and similarity to conotoxins. J Mol Evol 62:247–256

    Article  CAS  PubMed  Google Scholar 

  • Wong WSW, Yang Z, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Woodward SR, Cruz LJ, Olivera BM, Hillyard DR (1990) Constant and hypervariable regions in conotoxin propeptides. EMBO 9:1015–1020

    CAS  Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    CAS  PubMed  Google Scholar 

  • Yang Z (2002) Inference of selection from multiple species alignments. Curr Opin Genetics Dev 12:688–694

    Article  CAS  Google Scholar 

  • Yang Z (2006) Computational molecular evolution. Oxford University Press, Oxford

    Google Scholar 

  • Yang Z (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  PubMed  Google Scholar 

  • Yang Z, Nielsen R (1998) Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46:409–418

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R, Hasegawa M (1998) Models of amino acid substitution and applications to mitochondrial protein evolution. Mol Biol Evol 15:1600–1611

    CAS  PubMed  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Zafaralla GC, Ramilo C, Gray WR, Karlstrom R, Olivera BM, Cruz LJ (1988) Phylogenetic specificity of cholinergic ligands: a-conotoxin SI. Biochemistry 27:7102–7105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Program Project grant GM48677 (to BMO). We are pleased to thank Jon Seger, Nicole Kraus, Naoko Takezaki, and two anonymous reviewers for constructive comments on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Puillandre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puillandre, N., Watkins, M. & Olivera, B.M. Evolution of Conus Peptide Genes: Duplication and Positive Selection in the A-Superfamily. J Mol Evol 70, 190–202 (2010). https://doi.org/10.1007/s00239-010-9321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9321-7

Keywords

Navigation