Skip to main content
Log in

Certain Non-Standard Coding Tables Appear to be More Robust to Error Than the Standard Genetic Code

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Since the identification of the Standard Coding Table as a “universal” method to translate genetic information into amino acids, exceptions to this rule have been reported, and to date there are nearly 20 alternative genetic coding tables deployed by either nuclear genomes or organelles of organisms. Why are these codes still in use and why are new codon reassignments occurring? This present study aims to provide a new method to address these questions and to analyze whether these alternative codes present any advantages or disadvantages to the organisms or organelles in terms of robustness to error. We show that two of the alternative coding tables, The Ciliate, Dasycladacean and Hexamita Nuclear Code (CDH) and The Flatworm Mitochondrial Code (FMC), exhibit an advantage, while others such as The Yeast Mitochondrial Code (YMC) are at a significant disadvantage. We propose that the Standard Code is likely to have emerged as a “local minimum” and that the “coding landscape” is still being searched for a “global” minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ardell DH (1998) On error minimization in a sequential origin of the standard genetic code. J Mol Evol 47:1–13

    Article  CAS  PubMed  Google Scholar 

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367−379

    Article  CAS  PubMed  Google Scholar 

  • Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000) Early fixation of an optimal genetic code. Mol Biol Evol 17:511–518

    CAS  PubMed  Google Scholar 

  • Gultepe E, Kurnaz ML (2005) Monte Carlo simulation and statistical analysis of genetic information coding. Physica A 357:525–533

    Article  CAS  Google Scholar 

  • Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919

    Article  CAS  PubMed  Google Scholar 

  • Itzkovitz S, Alon U (2007) The genetic code is nearly optimal for allowing additional information within protein coding sequences. Genome Res 17:405–412

    Article  CAS  PubMed  Google Scholar 

  • Judson OP, Haydon D (1999) The genetic code: what is it good for? an analysis of the effects of selection pressures on genetic codes. J Mol Evol 49:539–550

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Honda H, Taniguichi-Morimura J, Iwasaki S (1989) The codon CUG is read as serine in an asporogenic yeast Candida cylindacea. Nature 341:164–166

    Article  CAS  PubMed  Google Scholar 

  • Klobutcher LA, Farabaugh PJ (2002) Shifty ciliates: frequent programmed translational frameshifting in euplotids. Cell 111:763–766

    Article  CAS  PubMed  Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (2001) Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet 2:49–58

    Article  CAS  PubMed  Google Scholar 

  • Kurnaz ML, Bilgin T, Aksan Kurnaz I (2008) A statistical analysis of the robustness of alternate genetic coding tables. Int J Mol Sci 9:679–697

    Article  CAS  PubMed  Google Scholar 

  • Lenski RE, Barrick JE, Ofria C (2006) Balancing robustness and evolvability. PLoS Biol 4:e428

    Article  PubMed  Google Scholar 

  • Liu X, Liu D, Qi J, Zheng WM (2002) Simplified amino acid alphabets based on deviation of conditional probability from random background. Phys Rev E 66:021906

    Article  Google Scholar 

  • Lozupone CA, Knight RD, Landweber LF (2001) The molecular basis of nuclear genetic code change in ciliates. Curr Biol 11:65–74

    Article  CAS  PubMed  Google Scholar 

  • Maeshiro T, Kimora M (1998) The role of robustness and changeability on the origin and evolution of genetic codes. Proc Natl Acad Sci 95:5088–5093

    Article  CAS  PubMed  Google Scholar 

  • Marquez R, Smit S, Knight R (2005) Do universal codon-usage patterns minimize the effects of mutation and translation error? Genome Biol 6:R91

    Article  PubMed  Google Scholar 

  • Mehl RA, Anderson JC, Santoro SW, Wang L, Martin AB, King DS, Horn DM, Schultz PG (2003) Generation of a bacterium with a 21 amino acid genetic code. J Am Chem Soc 125:935–939

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa S, Jernigan RL (1996) Residue–residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol 256:623–644

    Article  CAS  PubMed  Google Scholar 

  • Novozhilov AS, Wolf YI, Koonin EV (2007) Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape. Biol Direct 2:24

    Article  PubMed  Google Scholar 

  • Ohama T, Suzuki T, Mori M, Osawa S, Ueda T, Watanabe K, Nakase T (1993) Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res 21:4039–4045

    Article  CAS  PubMed  Google Scholar 

  • Ring KL, Cavalcanti RO (2008) Consequences of stop codon reassignment on protein evolution in ciliates with alternative genetic codes. Mol Biol Evol 25:179–186

    Article  CAS  PubMed  Google Scholar 

  • Santos MA, Tuite MF (1995) The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res 23:1481–1486

    Article  CAS  PubMed  Google Scholar 

  • Santos MA, Cheesman C, Costa V, Moradas-Ferreira P, Tuite MF (1999) Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp. Mol Microbiol 31:937–947

    Article  CAS  PubMed  Google Scholar 

  • Sella G, Ardell DH (2006) The coevolution of genes and genetic codes: Crick’s frozen accident revisited. J Mol Evol 63:297–313

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Higgs PG (2005) A unified model of codon reassignment in alternative genetic codes. Genetics 170:831–840

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Yang X, Higgs PG (2007) The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 64:662–688

    Article  CAS  PubMed  Google Scholar 

  • Silva RM, Miranda I, Moura G, Santos MA (2004) Yeast as a model organism for studying the evolution of non-standard genetic codes. Genomics Proteomics 3:35–46

    Article  CAS  Google Scholar 

  • Stoltzfus A, Yampolsky LY (2007) Amino acid exchangeability and the adaptive code hypothesis. J Mol Evol 65:456–462

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Blacklow SC, Cornish VW, Forster AC (2005) De novo genetic codes and pure translation display. Methods 36:279–290

    Article  CAS  PubMed  Google Scholar 

  • van der Gulik PTS. Three phases in the evolution of the standard genetic code: how translation could get started. Arxiv0711.0700

  • Weberndorfer MG (2002) Computational models of the genetic code evolution based on empirical potentials. PhD Dissertation, Universitaet Wien

  • Weberndorfer G, Hofacker IL, Stadler PF (2003) On the evolution of primitive genetic codes. Orig Life Evol Biosphere 33(4–5):491–514

    CAS  Google Scholar 

  • Zipperlen P, Fraser AG, Kamath RS, Martinez-Campos M, Ahringer J (2001) Roles for 147 embryonic lethal genes on C. elegans chromosome I identified by RNA interference and video microscopy. EMBO J 20(15):3984–3992

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by Bogazici University Research Fund (MLK); IAK is a TUBA GEBIP awardee (2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isil Aksan Kurnaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurnaz, M.L., Bilgin, T. & Kurnaz, I.A. Certain Non-Standard Coding Tables Appear to be More Robust to Error Than the Standard Genetic Code. J Mol Evol 70, 13–28 (2010). https://doi.org/10.1007/s00239-009-9303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9303-9

Keywords

Navigation