Journal of Molecular Evolution

, Volume 68, Issue 1, pp 97–111 | Cite as

Comparing Evolutionary Patterns and Variability in the Mitochondrial Control Region and Cytochrome b in Three Species of Baleen Whales



The rapidly evolving mitochondrial control region remains an important source of information on phylogeography and demographic history for cetaceans and other vertebrates, despite great uncertainty in the rate of nucleotide substitution across both nucleotide positions and lineages. Patterns of variation in linked markers with slower rates of evolution can potentially be used to calibrate the rate of nucleotide substitution in the control region and to better understand the interplay of evolutionary and demographic forces across the mitochondrial genome above and below the species level. We have examined patterns of diversity within and between three baleen whale species (gray, humpback, and Antarctic minke whales) in order to determine how patterns of molecular evolution differ between cytochrome b and the control region. Our results show that cytochrome b is less variable than expected given the diversity in the control region for gray and humpback whales, even after functional differences are taken into account, but more variable than expected for minke whales. Differences in the frequency distributions of polymorphic sites and in best-fit models of nucleotide substitution indicate that these patterns may be the result of hypervariability in the control region in gray and humpback whales but, in minke whales, may result from a large, stable or expanding population size coupled with saturation at the control region. Using paired cytochrome b and control region data across individuals, we show that the average rate of nucleotide substitution in the control region may be on average 2.6 times higher than phylogenetically derived estimates in cetaceans. These results highlight the complexity of making inferences from control region data alone and suggest that applying simple rules of DNA sequence analyses across species may be difficult.


Substitution rate Mammalian Mitochondrial genome Marine mammal Cetacea 


  1. Alter SE, Rynes E, Palumbi SR (2007) DNA evidence for historic population size and past ecosystem impacts of gray whales. Proc Natl Acad Sci USA 104:15162–15167PubMedCrossRefGoogle Scholar
  2. Alter SE, Flores Ramirez S, Nigenda S, Urbán Ramirez J, Rojas Bracho L, Palumbi SR (2008) Mitochondrial and nuclear genetic variation across calving lagoons in Eastern North Pacific gray whales (Eschrichtius robustus). J Hered. doi:10.1093/jhered/esn090
  3. Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312PubMedGoogle Scholar
  4. Arnason U, Gullberg A (1994) Relationship of baleen whales established by cytochrome b gene sequence comparison. Nature 367:726–728PubMedCrossRefGoogle Scholar
  5. Baker CS, Medrano-Gonzalez L (2002) World-wide distribution and diversity of humpback whale mitochondrial DNA lineages. In: Pfeiffer CJ (ed) Cell and molecular biology of marine mammals. Kreiger, Melbourne, FL, pp 84–99Google Scholar
  6. Baker CS, Perry A, Bannister JL, Weinrich MT, Abernethy RB, Calambokidis J, Lien J, Lambertsen RH, Ramirez JU, Vasquez O (1993) Abundant mitochondrial DNA variation and world-wide population structure in humpback whales. Proc Natl Acad Sci USA 90:8239–8243PubMedCrossRefGoogle Scholar
  7. Bradley DG, MacHugh DE, Cunningham P, Loftus RT (1996) Mitochondrial diversity and the origins of African and European cattle. Proc Natl Acad Sci USA 93:5131–5133PubMedCrossRefGoogle Scholar
  8. Burridge CP, Craw D, Fletcher D, Waters JM (2008) Geological dates and molecular rates: fish DNA sheds light on time dependency. Mol Biol Evol 25:624–633PubMedCrossRefGoogle Scholar
  9. Dalebout M, Robertson KM, Frantzis A, Engelhaupt D, Mignucci-Giannoni AA, Rosario-Delestre J, Baker CS (2005) Worldwide structure of mtDNA diversity among Cuvier’s beaked whales (Ziphius cavirostris): implications for threatened populations. Mol Ecol 14:3353–3371PubMedCrossRefGoogle Scholar
  10. Excoffier L, Yang Z (1999) Substitution rate variation among sites in mitochondrial hypervariable region I of humans and chimpanzees. Mol Biol Evol 16:1357–1368PubMedGoogle Scholar
  11. Fay JC, Wu C-I (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413PubMedGoogle Scholar
  12. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  13. Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K (2006) Mutation hot spots in mammalian mitochondrial DNA. Genome Res 16:215–222PubMedCrossRefGoogle Scholar
  14. Gillespie H (2004) Population genetics: a concise guide, 2nd edn. Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  15. Gillooly JF, Allen AP, West GB, Brown JH (2005) The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proc Natl Acad Sci USA 102:140–145PubMedCrossRefGoogle Scholar
  16. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  17. Henderson DA (1984) Nineteenth century gray whaling: grounds, catches and kills, practices and depletion of the whale population. In: Jones ML, Swartz SL, Leatherwood S (eds) The Gray Whale, Eschrichtius robustus. Academic Press, Orlando, FL, pp 159–186Google Scholar
  18. Higgins DG, Bleasby AJ, Fuchs R (1991) Clustal V: improved software for multiple sequence alignment. CABIOS 8:189–191Google Scholar
  19. Ho SYW, Larson G (2006) Molecular clocks: when times are a-changin. Trends Genet 22:79–83PubMedCrossRefGoogle Scholar
  20. Ho SYW, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence events. Mol Biol Evol 22:1561–1568PubMedCrossRefGoogle Scholar
  21. Ho SYW, Kolokotronis S, Allaby RG (2007) Elevated substitution rates estimated from ancient DNA sequences. Biol Lett 3:702–705PubMedCrossRefGoogle Scholar
  22. Ho SYW, Saarma U, Barnett R, Haile J, Shapiro B (2008) The effect of inappropriate calibration: three case studies in molecular ecology. PLoS ONE 3:e1615. doi:10.1371/journal.pone.0001615
  23. Hoelzel AR (1994) Genetics and ecology of whales and dolphins. Annu Rev Ecol Syst 25:377–399CrossRefGoogle Scholar
  24. Ina Y (1995) New methods for estimating the numbers of synonymous and non-synonymous substitutions. J Mol Evol 40:190–226PubMedCrossRefGoogle Scholar
  25. Kemp BM, Malhi RS, McDonough J, Bolnick DA, Eshleman JA, Rickards O, Martinez-Lbarga C, Johnson JR, Lorenz JG, Dixon EJ, Fifield TE, Heaton TH, Worl R, Smith DG (2007) Genetic analysis of early Holocene skeletal remains from Alaska and its implications for the settlement of the Americas. Am J Phy Anthropol 132:605–621CrossRefGoogle Scholar
  26. Kocher TD, Wilson AC (1991) Sequence evolution of mitochondrial DNA in human and chimpanzees: control region and protein coding region. In: Osawa S, Honjo T (eds) Evolution of life: fossils molecules and culture. Springer, Tokyo, pp 391–413Google Scholar
  27. Kuhner MK, Yamato J, Beerli P, Smith LP, Rynes E, Walkup E, Li C, Sloan J, Colacurcio P, Felsenstein J (2005) LAMARC v 2.0. University of Washington. Available at
  28. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  29. Laws RM (1977) The significance of vertebrates in the Antarctic marine ecosystem. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington DC, pp 411–438Google Scholar
  30. LeDuc R, Weller DW, Hyde J, Burdin AM, Rosel PE, Brownell RL Jr, Wursig B, Dizon AE (2002) Genetic differences between western and eastern gray whales (Eschrichtius robustus). J Cetac Res Manage 4:1–5Google Scholar
  31. Li W-H, Chu C-I, Luo C-C (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174PubMedGoogle Scholar
  32. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091PubMedCrossRefGoogle Scholar
  33. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654PubMedCrossRefGoogle Scholar
  34. Meyer S, Weiss G, von Haeseler A (1999) Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics 152:1103–1110PubMedGoogle Scholar
  35. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  36. Parsons TJ et al (1997) A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet 15:363–368PubMedCrossRefGoogle Scholar
  37. Pastene LA (2006) What do we know about the stock structure of the Antarctic minke whale? A summary of studies and hypotheses. Paper SC/D06/J12. Presented at the 58th meeting of the international whaling commission, St. Kitts and NevisGoogle Scholar
  38. Pastene LA, Got M, Kanda N, Zerbini AN, Kerem D et al (2007) Radiation and speciation of pelagic organisms during periods of global warming: the case of the common minke whale (Balaenoptera acutorostrata). Mol Ecol 16:1481–1495PubMedCrossRefGoogle Scholar
  39. Pesole G, Gissi C, DeChirico A, Saccone C (1999) Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol 48:427–434PubMedCrossRefGoogle Scholar
  40. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  41. Raina SZ, Faith JJ, Disotell TR, Seligmann H, Stewart C, Pollock DD (2006) Evolution of base-substitution gradients in primate mitochondrial genomes. Genome Res 15:665–673CrossRefGoogle Scholar
  42. Rodriguez F, Oliver JL, Marin A, Median JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501PubMedCrossRefGoogle Scholar
  43. Roman J, Palumbi SR (2003) Whales before whaling. Science 301:508–510PubMedCrossRefGoogle Scholar
  44. Rooney AP, Honeycutt RL, Derr JN (2001) Historical population size change of bowhead whales inferred from DNA sequence polymorphism data. Evolution 55:1678–1685PubMedGoogle Scholar
  45. Rosel PE, Dizon AE, Haygood MG (1995) Variability of the mitochondrial control region in populations of the harbour porpoises, Phocoena phocoena, on interoceanic and regional scales. Can J Fish Aquat Sci 52:1210–1219Google Scholar
  46. Rosenbaum HC, Egan MG, Clapham PJ, Brownell RL Jr, Malik S, Brown MW, White BN, Walsh P, DeSalle R (2000) Utility of North Atlantic right whale museum specimens for assessing changes in genetic diversity. Conserv Biol 17:1837CrossRefGoogle Scholar
  47. Rozas J, Sanchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analysis by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  48. Sasaki T, Nikaido M, Hamilton H, Goto M, Kato H, Kanda N, Pastene LA, Cao Y, Fordyce RE, Hasegawa M, Okada N (2005) Mitochondrial phylogenetics and evolution of mysticete whales. Syst Biol 54:77–90PubMedCrossRefGoogle Scholar
  49. Siguroardottir S, Helgason A, Gulcher JR, Stefansson K, Donnelly P (2000) The mutation rate in the human mtDNA control region. Am J Hum Genet 66:1599–1609CrossRefGoogle Scholar
  50. Swartz SL, Taylor B, Rugh D (2006) Gray whale Eschrichtius robustus population and stock identity. Mammal Rev 36:66–84CrossRefGoogle Scholar
  51. Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  52. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedGoogle Scholar
  53. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  54. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  55. Wakeley J (1994) Substitution-rate variation among sites and the estimation of transition bias. Mol Biol Evol 11:436–442PubMedGoogle Scholar
  56. Watterson GA (1975) On the number of segregation sites. Theor Pop Biol 7:256–276CrossRefGoogle Scholar
  57. Whitehead H (1998) Cultural selection and genetic diversity in matrilineal whales. Science 282:1708–1711PubMedCrossRefGoogle Scholar
  58. Xia X, Hafner MS, Sudman PD (1996) On transition bias in mitochondrial genes of pocket gophers. J Mol Evol 43:32–40PubMedCrossRefGoogle Scholar
  59. Yang Z (2003) Phylogenetic analysis by maximum likelihood (PAML), version 3.15. Institute of Molecular Evolutionary Genetics, Pennsylvania State University, PhiladelphiaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Biological Sciences, Hopkins Marine StationStanford UniversityPacific GroveUSA
  2. 2.NRDCNew YorkUSA

Personalised recommendations