Journal of Molecular Evolution

, Volume 67, Issue 6, pp 621–630 | Cite as

Do Amino Acid Biosynthetic Costs Constrain Protein Evolution in Saccharomyces cerevisiae?

  • Douglas W. Raiford
  • Esley M. HeizerJr
  • Robert V. Miller
  • Hiroshi Akashi
  • Michael L. Raymer
  • Dan E. Krane


Prokaryotic organisms preferentially utilize less energetically costly amino acids in highly expressed genes. Studies have shown that the proteome of Saccharomyces cerevisiae also exhibits this behavior, but only in broad terms. This study examines the question of metabolic efficiency as a proteome-shaping force at a finer scale, examining whether trends consistent with cost minimization as an evolutionary force are present independent of protein function and amino acid physicochemical property, and consistently with respect to amino acid biosynthetic costs. Inverse correlations between the average amino acid biosynthetic cost of the protein product and the levels of gene expression in S. cerevisiae are consistent with natural selection to minimize costs. There are, however, patterns of amino acid usage that raise questions about the strength (and possibly the universality) of this selective force in shaping S. cerevisiae’s proteome.


Saccharomyces cerevisiae Biosynthetic cost Metabolic efficiency Expressivity Amino acid 


  1. Akashi H (2003) Translational selection and yeast proteome evolution. Genetics 164(4):1291–1303PubMedGoogle Scholar
  2. Akashi H, Gojobori T (2002) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 99(6):3695–3700PubMedCrossRefGoogle Scholar
  3. Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  4. Black SD, Mould DR (1991) Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Anal Biochem 193(1):72–82PubMedCrossRefGoogle Scholar
  5. Brocchieri L, Karlin S (2005) Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res 33(10):3390–3400PubMedCrossRefGoogle Scholar
  6. Craig CL, Weber RS (1998) Selection costs of amino acid substitutions in cole1 and colia gene clusters harbored by Escherichia coli. Int J Biol Macromol 24:109–118CrossRefGoogle Scholar
  7. Dickinson J, Schweizer M (1999) The metabolism and molecular physiology of Saccharomyces cerevisiae. Taylor & Francis, LondonGoogle Scholar
  8. dos Reis M, Wernisch L, Savva R (2003) Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res 31(23):6976–6985PubMedCrossRefGoogle Scholar
  9. Eyre-Walker A (1996) Synonymous codon bias is related to gene length in Escherichia coli: selection for translational accuracy? Mol Biol Evol 13:864–872PubMedGoogle Scholar
  10. Garcia-Vallvé S, Guzman E, Montero MA, Romeu A (2003) HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res 31(1):187–189PubMedCrossRefGoogle Scholar
  11. Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425(6959):737–741PubMedCrossRefGoogle Scholar
  12. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(5287):546–567PubMedCrossRefGoogle Scholar
  13. Güldener U, Münsterkötter M, Kastenmüller G, Strack N, van Helden J, Lemer C, Richelles J, Wodak SJ, García-Martínez J, Pérez-Ortín JE, Michael H, Kaps A, Talla E, Dujon B, André B, Souciet JL, De Montigny J, Bon E, Gaillardin C, Mewes HW (2005) CYGD: the Comprehensive Yeast Genome Database. Nucleic Acids Res 33(Database Issue):D364–D368PubMedCrossRefGoogle Scholar
  14. Gutierrez G, Marquez L, Maryn A (1996) Preference for guanosine at first codon position in highly expressed Escherichia coli genes. A relationship with translational efficiency. Nucleic Acids Res 24:2525–2527PubMedCrossRefGoogle Scholar
  15. Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4(6):1102–1115PubMedCrossRefGoogle Scholar
  16. Heizer EM Jr, Raiford DWIII, Raymer ML, Doom TE, Miller RV, Krane DE (2006) Amino acid cost and codon-usage biases in 6 prokaryotic genomes: a whole-genome analysis. Mol Biol Evol 23(9):1670–1680PubMedCrossRefGoogle Scholar
  17. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95(5):717–728PubMedCrossRefGoogle Scholar
  18. Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96(7):3801–3806PubMedCrossRefGoogle Scholar
  19. Kahali B, Basak S, Ghosh TC (2007) Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis. Biochem Biophys Res Commun 354(3):693–699PubMedCrossRefGoogle Scholar
  20. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748PubMedGoogle Scholar
  21. Nei M (1975) Molecular population genetics and evolution. Front Biol 40:I–288Google Scholar
  22. Seligmann H (2003) Cost-minimization of amino acid usage. J Mol Evol 56(2):151–161PubMedCrossRefGoogle Scholar
  23. Sharp PM, Li WH (1987) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295PubMedCrossRefGoogle Scholar
  24. Spearman C (1904) General intelligence objectively determined and measured. Am J Psychol 15:201–293CrossRefGoogle Scholar
  25. Swire J (2007) Selection on synthesis cost affects interprotein amino acid usage in all three domains of life. J Mol Evol 64(5):558–571PubMedCrossRefGoogle Scholar
  26. Urrutia AO, Hurst LD (2003) The signature of selection mediated by expression on human genes. Genome Res 13(10):2260–2264PubMedCrossRefGoogle Scholar
  27. Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22(6):1365–1374PubMedCrossRefGoogle Scholar
  28. Warringer J, Blomberg A (2006) Evolutionary constraints on yeast protein size. BMC Evol Biol 6:61PubMedCrossRefGoogle Scholar
  29. Zubay G (1998) Biochemistry. William C, Brown, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Douglas W. Raiford
    • 1
  • Esley M. HeizerJr
    • 2
  • Robert V. Miller
    • 3
  • Hiroshi Akashi
    • 4
  • Michael L. Raymer
    • 5
  • Dan E. Krane
    • 2
  1. 1.Department of Computer Science and EngineeringSouthern Methodist UniversityDallasUSA
  2. 2.Department of Biological SciencesWright State UniversityDaytonUSA
  3. 3.Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterUSA
  4. 4.Department of BiologyPennsylvania State UniversityUniversity ParkUSA
  5. 5.Department of Computer Science and EngineeringWright State UniversityDaytonUSA

Personalised recommendations