Journal of Molecular Evolution

, Volume 67, Issue 4, pp 377–388 | Cite as

Recombination in Mitochondrial DNA of European Mussels Mytilus

  • Monika Filipowicz
  • Artur BurzyńskiEmail author
  • Beata Śmietanka
  • Roman Wenne


Mitochondrial DNA was long believed to be purely clonal and free from recombination. Major phylogenetic studies still depend on such assumptions. The peculiar genetic system of marine mussels Mytilus in which two divergent mitochondrial genomes exist provides a unique opportunity to study mtDNA recombination. Previous reports showed the existence of a few haplotypes having very strong recombination signal in the control region of mtDNA. Those recombinant variants have been found in a Baltic Sea population of Mytilus trossulus as well as in Mytilus galloprovincialis from the Black Sea. In both cases the mosaic genomes switched their transmission route and have been inherited paternally. In the present study rearranged mtDNA genomes found in all three European Mytilus species are described. The structure of their control region is a result of intra- and intermolecular recombination between mitochondrial genomes. Together with the phylogenetic reconstruction and geographic distribution, this suggests that two interlineage recombination events have occurred in the control region of mtDNA of European mussels Mytilus. Contrary to earlier observations, some of the mosaic genomes do not show any gender bias, which has important implications regarding the transmission and evolution of blue mussel mitochondrial genomes.


mtDNA recombination D-loop Control region Doubly uniparental inheritance 



This work was partially supported by Grant N30300531/0226 from the Polish Ministry of Science and Higher Education to R.W.


  1. Abbott CL, Double MC, Trueman JWH, Robinson A, Cockburn A (2005) An unusual source of apparent mitochondrial heteroplasmy: duplicate mitochondrial control regions in Thalassarche albatrosses. Mol Ecol 14:3605–3613PubMedCrossRefGoogle Scholar
  2. Bierne N, Borsa P, Daguin C, Jollivet D, Viard F, Bonhomme F, David P (2003) Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M. galloprovincialis. Mol Ecol 2:447–461CrossRefGoogle Scholar
  3. Bonfield JK, Smith KF, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 24:4992–4999CrossRefGoogle Scholar
  4. Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047PubMedCrossRefGoogle Scholar
  5. Breton S, Burger G, Stewart DT, Blier PU (2006) Comparative analysis of Gender-associated complete mitochondrial genomes in marine mussel (Mytilus spp). Genetics 172:1107–1119PubMedCrossRefGoogle Scholar
  6. Burzyński A (2007) Two events are responsible for an insertion in a paternally inherited mitochondrial genome of the mussel Mytilus galloprovincialis. Genetics 175:959–962PubMedCrossRefGoogle Scholar
  7. Burzyński A, Zbawicka M, Skibinski DOF, Wenne R (2003) Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic. Mol Biol Evol 20:388–392PubMedCrossRefGoogle Scholar
  8. Burzyński A, Zbawicka M, Skibinski DOF, Wenne R (2006) Doubly uniparental inheritance is associated with high polymorphism for rearranged and recombinant control region haplotypes in Baltic Mytilus trossulus. Genetics 174:1081–1094PubMedCrossRefGoogle Scholar
  9. Cao L, Kenchington E, Zouros E, Rodakis GC (2004a) Evidence that the large noncoding sequence is the main control region of maternally and paternally transmitted mitochondrial genomes of the marine mussel (Mytilus spp.). Genetics 167:835–850PubMedCrossRefGoogle Scholar
  10. Cao L, Kenchington E, Zouros E (2004b) Differerential segregation patterns of sperm mitochondria in embryos of the blue mussel (Mytilus edulis). Genetics 166:883–894PubMedCrossRefGoogle Scholar
  11. Curole JP, Kocher TD (2005) Evolution of a unique mitotype-specific protein-coding extension of the cytochrome c oxidase II gene in freshwater mussels (Bivalvia: Unionoida). J Mol Evol 61:381–389PubMedCrossRefGoogle Scholar
  12. Eberhard JR, Wright TF, Bermingham E (2001) Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona. Mol Biol Evol 18:1330–1342PubMedGoogle Scholar
  13. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–85Google Scholar
  14. Fisher C, Skibinski DOF (1990) Sex-biased mitochondrial DNA heteroplasmy in the marine mussel Mytilus. Proc R Soc Lond Ser B 242:149–156CrossRefGoogle Scholar
  15. Gach MH, Brown WM (1997) Characteristics and distribution of large tandem duplications in brook stickeback (Culaea inconstans) mitochondrial DNA. Genetics 145:383–394PubMedGoogle Scholar
  16. Gantenbein B, Fret V, Gantenbein-Ritter IA, Balloux F (2004) Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae). Proc R Soc Lond Ser B 272:697–704CrossRefGoogle Scholar
  17. Garrido-Ramos MA, Stewart DT, Sutherland BW, Zouros E (1998) The distribution of male-transmitted mitochondrial DNA types in somatic tissues of blue mussels: implications for the operation of doubly uniparental inheritance of mitochondrial DNA. Genome 41:818–824CrossRefGoogle Scholar
  18. Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582PubMedCrossRefGoogle Scholar
  19. Gyllensten U, Wharton D, Josefsson A, Wilson AC (1991) Paternal inheritance of mitochondrial DNA in mice. Nature 352:255–257PubMedCrossRefGoogle Scholar
  20. Higgins DG, Sharp PM (1989) Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci 5:151–153PubMedGoogle Scholar
  21. Hoarau G, Holla S, Lescasse R, Stam WT, Olsen JL (2002) Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Platichthys flesus. Mol Biol Evol 12:2261–2264Google Scholar
  22. Hoeh WR, Stewart DT, Sutherland BW, Zouros E (1996) Multiple origins of gender-associated mitochondrial DNA lineages in bivalves (Mollusca: Bivalvia). Evolution 50:2276–2286CrossRefGoogle Scholar
  23. Hoeh WR, Stewart DT, Saavedra C, Sutherland BW, Zouros E (1997) Phylogenetic evidence for role-reversals of gender-associated mitochondrial DNA in Mytilus (Bivalvia: Mytilidae). Mol Biol Evol 14:959–967PubMedGoogle Scholar
  24. Hoeh WR, Stewart DT, Guttman SI (2002) High fidelity of mitochondrial genome transmission under the doubly uniparental mode of inheritance in freshwater mussels (Bivalvia: Unionoida). Evolution 56:2252–2261PubMedGoogle Scholar
  25. Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahatat N, Chigusa SI (1990) Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics 126:657–663PubMedGoogle Scholar
  26. Kraytsberg Y, Schwartz M, Brown TA, Ebralidse K, Kunz WS, Clayton DA, Vissing J, Khrapko K (2004) Recombination of human mitochondrial DNA. Science 304:981PubMedCrossRefGoogle Scholar
  27. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  28. Kumazawa Y, Ota H, Nishida M, Ozawa T (1996) Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA cluster. Mol Biol Evol 13:1242–1254PubMedGoogle Scholar
  29. Kvist L, Martens J, Nazarenko AA, Orell M (2003) Paternal leakage of mitochondrial DNA in the great tit (Parus major). Mol Biol Evol 20:243–247PubMedCrossRefGoogle Scholar
  30. Ladoukakis ED, Zouros E (2001) Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA. Mol Biol Evol 18:1168–1175PubMedGoogle Scholar
  31. Ladoukakis ED, Saavaedra C, Magoulas A, Zouros E (2002) Mitochondrial DNA variation in a species with two mitochondrial genomes: the case of Mytilus galloprovinicialis from the Atlantic, the Mediterranean and the Black Sea. Mol Ecol 11:759–769CrossRefGoogle Scholar
  32. Lavrov DV, Boore JL, Brown WM (2002) Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol 19:163–169PubMedGoogle Scholar
  33. Liu H, Mitton JB, Wu S (1996) Paternal mitochondrial DNA differentiation far exceeds maternal mitochondrial DNA and allozyme differentiation in the freshwater mussel, Anodonta grandis grandis. Evolution 50:952–957CrossRefGoogle Scholar
  34. Magoulas A, Zouros E (1993) Restriction-site heteroplasmy in anchovy (Engraulis encrasicolus) indicates incidental biparental inheritance of mitochondrial DNA. Mol Biol Evol 10:319–325Google Scholar
  35. Martin DP, Posada D, Crandall KA, Williamson C (2005a) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21:98–102PubMedCrossRefGoogle Scholar
  36. Martin DP, Williamson C, Posada D (2005b) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262PubMedCrossRefGoogle Scholar
  37. Maynard Smith J (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126–129Google Scholar
  38. Meusel MS, Moritz RF (1993) Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs. Curr Genet 24:539–543PubMedCrossRefGoogle Scholar
  39. Mizi A, Zouros E, Moschonas N, Rodakis GC (2005) The complete maternal and paternal mitochondrial genomes of the Mediterranean mussel Mytilus galloprovincialis: implications for the doubly uniparental inheritance mode of mtDNA. Mol Biol Evol 22:952–967PubMedCrossRefGoogle Scholar
  40. Mueller RL, Boore JL (2005) Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. Mol Biol Evol 22:2104–2112PubMedCrossRefGoogle Scholar
  41. Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225PubMedCrossRefGoogle Scholar
  42. Passamonti M, Scali V (2001) Gender-associated mtDNA heteroplasmy in the venerid clam Tapes philippinarum (Mollusca Bivalvia). Curr Genet 39:117–124PubMedCrossRefGoogle Scholar
  43. Piganeau G, Gardner M, Eyre-Walker A (2004) A broad survey of recombination in animal mitochondria. Mol Biol Evol 21:2319–2325PubMedCrossRefGoogle Scholar
  44. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  45. Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 98:13757–13762PubMedCrossRefGoogle Scholar
  46. Quesada H, Stuckas H, Skibinski DOF (2003) Heteroplasmy suggests paternal co-transmission of multiple genomes and pervasive reversion of maternally into paternally transmitted genomes of mussel (Mytilus) mitochondrial DNA. J Mol Evol 57:1–10CrossRefGoogle Scholar
  47. Rawson PD (2005) Nonhomologous recombination between the large unassigned region of the male and female mitochondrial genomes in the mussel, Mytilus trossulus. J Mol Evol 61:717–732PubMedCrossRefGoogle Scholar
  48. Rayssiguier C, Thayler DS, Radman M (1989) The barrier to recombination between Eschericha coli and Salmonella typhymurium disrupted in mismatch-repair mutants. Nature 342:396–401PubMedCrossRefGoogle Scholar
  49. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277PubMedCrossRefGoogle Scholar
  50. Roff DA, Bentzen P (1989) The statistical analysis of mitochondrial DNA polymorphisms: chi-square and the problem of small samples. Mol Biol Evol 6:539–545PubMedGoogle Scholar
  51. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  52. Sambrock J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  53. Sano N, Obata M, Komaru A (2007) Quantitation of the male and female types of mitochondrial DNA in a blue mussel, Mytilus galloprovincialis, using real-time polymerase chain reaction assay. Dev Growth Differ 49:67–72PubMedGoogle Scholar
  54. Schwartz M, Vissing J (2002) Paternal inheritance of mitochondrial DNA. N Engl J Med 347:576–580PubMedCrossRefGoogle Scholar
  55. Shao R, Barker SC, Mitani H, Aoki Y, Fukunaga M (2004) Evolution of duplicate control regions in the mitochondrial genomes of metazoa: a case study with Australasian Ixodes ticks. Mol Biol Evol 22:620–629PubMedCrossRefGoogle Scholar
  56. Shao R, Mitani H, Barker SC, Takahashi M, Fukunaga M (2005) Novel mitochondrial gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum. J Mol Evol 60:764–773PubMedCrossRefGoogle Scholar
  57. Skibinski DOF, Gallagher C, Beynon CM (1994) Mitochondrial DNA inheritance. Nature 368:817–818PubMedCrossRefGoogle Scholar
  58. Śmietanka B, Zbawicka M, Wołowicz M, Wenne R (2004) Mitochondrial DNA lineages in the European populations of mussels Mytilus. Mar Biol 146:79–92CrossRefGoogle Scholar
  59. Stanton DJ, Daehler LL, Moritz CC, Brown WM (1994) Sequences with the potential to form stem-and-loop structures are associated with coding-region duplications in animal mitochondrial DNA. Genetics 137:233–241PubMedGoogle Scholar
  60. Sutherland B, Stewart D, Kenchington ER, Zouros E (1998) The fate of paternal mitochondrial DNA in developing female mussels, Mytilus edulis: implications for the mechanism of doubly uniparental inheritance of mitochondrial DNA. Genetics 148:341–348PubMedGoogle Scholar
  61. Swofford DL (2003) PAUP*: Phylogenetic analysis using parsimony and other methods. Version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  62. Theologidis I, Fodelianakis S, Gaspar MB, Zouros E (2008) Doubly uniparental inheritance (DUI) of mitochondrial DNA in Donax trunculus (Bivalvia: Donacidae) and the problem of its sporadic detection in Bivalvia. Evolution 62:959–970PubMedCrossRefGoogle Scholar
  63. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  64. Tsaousis AD, Martin DP, Ladoukakis ED, Posada D, Zouros E (2005) Widespread recombination in published animal mtDNA sequences. Mol Biol Evol 22:925–933PubMedCrossRefGoogle Scholar
  65. Venetis C, Theologidis I, Zouros E, Rodakis GC (2007) A mitochondrial genome with a reversed transmission route in the Mediterranean mussel Mytilus galloprovincialis. Gene 406:79–90PubMedGoogle Scholar
  66. Wiuf C, Christensen T, Hein J (2001) a simulation study of the reliability of recombination detection methods. Mol Biol Evol 18:1929–1939PubMedGoogle Scholar
  67. Zouros E, Ball AO, Saavedra C, Freeman KR (1994) Mitochondrial DNA inheritance. Nature 368:818PubMedCrossRefGoogle Scholar
  68. Zsurka G, Kraytsberg Y, Kudina T, Kornblum C, Elger CE, Khrapko K, Kunz W (2005) Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy. Nat Genet 37:873–877PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Monika Filipowicz
    • 1
  • Artur Burzyński
    • 1
    Email author
  • Beata Śmietanka
    • 1
  • Roman Wenne
    • 1
  1. 1.Department of Genetics and Marine BiotechnologyPolish Academy of Sciences, Institute of OceanologySopotPoland

Personalised recommendations