Skip to main content
Log in

Polymorphism and Divergence at Three Duplicate Genes in Brassica nigra

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The CONSTANS-like gene family has been shown to evolve exceptionally fast in Brassicaceae. In the present study we analyzed sequence polymorphism and divergence of three genes from this family: COL1 (CONSTANS-LIKE 1) and two copies of CO (CONSTANS), COa and COb, in B. nigra. There was a significant fourfold difference in overall nucleotide diversity among the three genes, with BniCOb having twice as much variation as BniCOL1, which in turn was twice as variable as BniCOa. The ratio of nonsynonymous-to-synonymous substitutions (dN/dS) was high for all three genes, confirming previous studies. While we did not detect evidence of selection at BniCOa and BniCOb, there was a significant excess of polymorphic synonymous mutations in a McDonald-Kreitman test comparing COL1 in B. nigra and A. thaliana. This is apparently the result of an increase in selective constraint on COL1 in B. nigra combined with a decrease in A. thaliana. In conclusion, a complex scenario involving both demography and selection seems to have shaped the pattern of polymorphism at the three genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland, MA, pp 38–61

    Google Scholar 

  • Averof M (2002) Arthropod Hox genes: insights on the evolutionary forces that shape gene functions. Curr Opin Genet Dev 12:386–392

    Article  PubMed  CAS  Google Scholar 

  • Britten RI, Rowen L, Williams J, Cameron RA (2003) Majority of divergence between closely related DNA samples is due to indels. Proc Natl Acad Sci USA 100:4661–4665

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A (2006) The genomic rate of adaptive evolution Trends Ecol Evol 21:569–575

    Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhicking under positive Darwinian selection. Genetics 155:1405–1413

    PubMed  CAS  Google Scholar 

  • Fisher RA (1935) The sheltering of lethals. Am Nat 69:446–455

    Article  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Gibson TJ, Spring J (1998) Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins. Trends Genet 14:46–49

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1933) The part played by recurrent mutation in evolution. Am Nat 67:5–19

    Article  Google Scholar 

  • Hudson RR (1987) Estimating the recombination parameter of a finite population model without selection. Genet Res Cambr 50:245–250

    Article  CAS  Google Scholar 

  • Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18:337–338

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR, Boos D, Kaplan NL (1992) A statistical test for detecting geographic subdivision. Mol Biol Evol 9:138–151

    PubMed  CAS  Google Scholar 

  • Hughes AL (2005) Gene duplication and the origin of novel proteins. Proc Natl Acad Sci USA 102:8791–8792

    Article  PubMed  CAS  Google Scholar 

  • Innan H (2003) The coalescent and infinite-site model of a small multigene family. Genetics 163:803–810

    PubMed  CAS  Google Scholar 

  • Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM, Kim HI, Park BS (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39

    Article  PubMed  CAS  Google Scholar 

  • Krouchi F, Gustavsson S, Sjödin P, Kruskopf-Österberg M, Lagercrantz U, Lascoux M (2008) Association between COL1 and flowering time in Brassica nigra: replication, validation and genotypic disequilibrium. Int J Plant Sci (in press)

  • Kruskopf-Österberg M, Shavorskaya O, Lascoux M, Lagercrantz U (2002) Naturally occurring indel variation in the B. nigra COL1 gene is associated with variation in flowering time. Genetics 161:299–306

    Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    PubMed  CAS  Google Scholar 

  • Lagercrantz U, Axelsson T (2000) Rapid evolution of the family of CONSTANS LIKE genes in plants. Mol Biol Evol 17:1499–1507

    PubMed  CAS  Google Scholar 

  • Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996) Comparative mapping in Arabidopsis and Brassica, congruence of genes controlling flowering time. Plant J 9:13–20

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz U, Kruskopf-Österberg M, Lascoux M (2002) Sequence variation and haplotype structure at the putative flowering-time locus COL1 of Brassica nigra. Mol Biol Evol 19:1474–1482

    PubMed  CAS  Google Scholar 

  • Ledger S, Strayer C, Ashton F, Kay SA, Putterill J (2001) Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 26:15–22

    Article  PubMed  CAS  Google Scholar 

  • Lou P, Zhao J, Kim JS, Shen S, Del Carpio DP, Song X, Jin M, Vreugdenhil D, Wang X, Koornneef M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Lysak M, Koch M, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer Verlag, Berlin

    Google Scholar 

  • Okazaki K, Sakamoto K, Kikuchi R, Saito A, Togashi E, Kuginuki Y, Matsumoto S, Hirai M (2007) Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor Appl Genet 114:595–608

    Article  PubMed  CAS  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopis thaliana. Genetics 171:765–781

    Article  PubMed  CAS  Google Scholar 

  • Putterill J, Robson F, LeeK, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  PubMed  CAS  Google Scholar 

  • Putterill J, Ledger S, Lee K, Robson F, Murphy G, Coupland G (1997) The flowering time gene CONSTANS and homologue CONSTANS LIKE 1 (Accession no. Y10555 and Y10556) exist as a tandem repeat on chromosome 5 of Arabidopsis. Plant Physiol 114:396

    Google Scholar 

  • Rozas J, Sánchez-DelBarria JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 29:2496–2497

    Article  CAS  Google Scholar 

  • Samach A, Onouschi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky M, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18:1152–1165

    Article  PubMed  CAS  Google Scholar 

  • Schranz ME, Quijada P, Sung SB, Lukens L, Amasino R, Osborn TC (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457–1468

    PubMed  CAS  Google Scholar 

  • Shavorskaya O, Lagercrantz U (2006) Sequence divergence at the putative flowering time locus COL1 in Brassicaceae. Mol Phylogenet Evol 39:846–854

    Article  PubMed  CAS  Google Scholar 

  • Sjödin P, Shavorskaya O, Hedman H, Finet C, Lascoux M, Lagercrantz U (2006) Recent degeneration of an old duplicated flowering time gene in B. nigra. Heredity 98:375–384

    Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 15:4876–4882

    Article  Google Scholar 

  • Thornton K, Long M (2005) Excess of amino acid substitutions relative to polymorphism between X-linked duplications in Drosophila melanogaster. Mol Biol Evol 22:273–284

    Article  PubMed  CAS  Google Scholar 

  • Van Hoof A (2005) Conserved functions of yeast genes support the Duplication, Degeneration and Complementation model of gene duplication. Genetics 171:1455–1461

    Article  PubMed  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Pop Biol 7:256–276

    Article  CAS  Google Scholar 

  • Westman AL, Kresovich S (1999) Simple sequence repeat (SSR)-based marker variation in Brassica nigra genebank accessions and weed populations. Euphytica 109:85–92

    Article  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl BioSci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43

    PubMed  CAS  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  • Zhang Z, Kishino H (2004) Genomic background predicts the fate of duplicated genes: evidence from the yeast genome. Genetics 166:1995–1999

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E (2001) Intrinsically driven changes in gene interaction complexity. I. Growth of regulatory complexes and increase in number of genes. J Mol Evol 53:539–554

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Martin Kreitman and an anonymous referee for extremely useful comments on an early draft. Support was provided by the Swedish Research Council (VR), the Swedish Research Council for Environment, Agricultural Sciences, and Spatial Planning (FORMAS), the Erik Philip Sörensen Foundation, and the Nilsson-Ehle Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Lascoux.

Additional information

Sequence data were deposited in the GenBank database under accession nos. EU693946-EU694094.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjödin, P., Hedman, H., Kruskopf Österberg, M. et al. Polymorphism and Divergence at Three Duplicate Genes in Brassica nigra . J Mol Evol 66, 581–590 (2008). https://doi.org/10.1007/s00239-008-9108-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9108-2

Keywords

Navigation