Skip to main content
Log in

Heterogeneous Nature and Distribution of Interruptions in Dinucleotides May Indicate the Existence of Biased Substitutions Underlying Microsatellite Evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Some aspects of microsatellite evolution, such as the role of base substitutions, are far from being fully understood. To examine the significance of base substitutions underlying the evolution of microsatellites we explored the nature and the distribution of interruptions in dinucleotide repeats from the human genome. The frequencies that we inferred in the repetitive sequences were statistically different from the frequencies observed in other noncoding sequences. Additionally, we detected that the interruptions tended to be towards the ends of the microsatellites and 5′-3′ asymmetry. In all the estimates nucleotides forming the same repetitive motif seem to be affected by different base substitution rates in AC and AG. This tendency itself could generate patterning and similarity in flanking sequences and reconcile these phenomena with the high mutation rate found in flanking sequences without invoking convergent evolution. Nevertheless, our data suggest that there is a regional bias in the substitution pattern of microsatellites. The accumulation of random substitutions alone cannot explain the heterogeneity and the asymmetry of interruptions found in this study or the relative frequency of different compound microsatellites in the human genome. Therefore, we cannot rule out the possibility of a mutational bias leading to convergent or parallel evolution in flanking sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Armour JA, Harris PC, Jeffreys AJ (1993) Allelic diversity at minisatellite MS205 (D16S309): evidence for polarized variability. Hum Mol Genet 2:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Arndt PF, Hwa T, Petrov DA (2005) Substantial regional variation in substitution rates in the human genome: importance of GC content, gene density, and telomere-specific effects. J Mol Evol 60:748–763

    Article  PubMed  CAS  Google Scholar 

  • Brohede J, Ellegren H (1999) Microsatellite evolution: asymmetry of substitutions within repeats and neutrality of flanking sequences. Proc R Soc Lond B 266:825–833

    Article  CAS  Google Scholar 

  • Bull LN, Pabon-Pena CR, Freimer NB (1999) Compound microsatellite repeats: practical and theoretical features. Genome Res 9:830–838

    Article  PubMed  CAS  Google Scholar 

  • Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J (1996) A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380:152–154

    Article  PubMed  CAS  Google Scholar 

  • Eichler EE, Kunst CB, Lugenbeel KA, Ryder OA, Davison D, Warren ST (1995) Evolution of the cryptic FMR1 CGG repeat. Nat Genet 11:301–307

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2000) Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet 24:400–402

    Article  PubMed  CAS  Google Scholar 

  • Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Genet 6:743–755

    Article  CAS  Google Scholar 

  • Goldstein DB, Schlötterer C (1998) Microsatellites: evolution and applications. Oxford University Press, New York

    Google Scholar 

  • Goodman MF, Fygenson KD (1998) DNA polymerase fidelity: from genetics toward a biochemical understanding. Genetics 148:1475–1482

    PubMed  CAS  Google Scholar 

  • Harr B, Zangerl B, Schlotterer C (2000) Removal of microsatellite interruptions by DNA replication slippage: phylogenetic evidence from Drosophila. Mol Biol Evol 17:1001–1009

    PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Tamaki K, MacLeod A, Monckton DG, Neil DL, Armour JA (1994) Complex gene conversion events in germline mutation at human minisatellites. Nat Genet 6:136–145

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Macaubas C, Hallmayer J, Kimura A, Mignot E (1996) Mutation rate varies among alleles at a microsatellite locus: phylogenetic evidence. Proc Natl Acad Sci USA 93:15285–15288

    Article  PubMed  CAS  Google Scholar 

  • Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247

    PubMed  CAS  Google Scholar 

  • Kruglyak S, Durrett RT, Schug MD, Aquadro CF (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95:10774–10778

    Article  PubMed  CAS  Google Scholar 

  • Li WH (1997) Molecular evolution. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Marra G, Shar P (1999) Recognition of DNA alterations by the mismatch repair system. Biochem J 338:1–13

    Article  PubMed  CAS  Google Scholar 

  • Schlötterer C, Amos B, Tautz D (1991) Conservation of polymorphic simple sequence loci in cetacean species. Nature 354:63–65

    Article  PubMed  Google Scholar 

  • Smith NG, Webster MT, Ellegren H (2002) Deterministic mutation rate variation in the human genome. Genome Res 12:1350–1356

    Article  PubMed  CAS  Google Scholar 

  • Stallings RL (1995) Conservation and evolution of (Ct)(N)/(Ga)(N) microsatellite sequences at orthologous positions in diverse mammalian genomes. Genomics 25:107–113

    Article  PubMed  CAS  Google Scholar 

  • Stephan W, Kim Y (1998) Persistence of microsatellite arrays in finite populations. Mol Biol Evol 15:1332–1336

    PubMed  CAS  Google Scholar 

  • Tachida H, Iizuka M (1992) Persistence of repeated sequences that evolve by replication slippage. Genetics 131:471–478

    PubMed  CAS  Google Scholar 

  • Taylor JS, Durkin JM, Breden F (1999) The death of a microsatellite: a phylogenetic perspective on microsatellite interruptions. Mol Biol Evol 16:567–572

    PubMed  CAS  Google Scholar 

  • Vowles EJ, Amos W (2004) Evidence for widespread convergent evolution around human microsatellites. PLoS Biol. 2:E199

    Article  PubMed  CAS  Google Scholar 

  • Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Webster MT, Hagberg J (2007) Is there evidence for convergent evolution around human microsatellites? Mol Biol Evol 24:1097–1100

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Gerstein M (2003) Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Res 31:5338–5348

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Strassmann JE, Queller DC (2000) Insertions, substitutions, and the origin of microsatellites. Genet Res 76:227–236

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gary Benson for his helpful comments on the use of his program Tandem Repeats Finder (TRF). This research was funded by a grant from Xunta de Galicia awarded to M.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Martinez-Lage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varela, M.A., Sanmiguel, R., Gonzalez-Tizon, A. et al. Heterogeneous Nature and Distribution of Interruptions in Dinucleotides May Indicate the Existence of Biased Substitutions Underlying Microsatellite Evolution. J Mol Evol 66, 575–580 (2008). https://doi.org/10.1007/s00239-008-9107-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9107-3

Keywords

Navigation