Skip to main content
Log in

Dropout Alignment Allows Homology Recognition and Evolutionary Analysis of rDNA Intergenic Spacers

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Subrepeats within the ribosomal gene (rDNA) intergenic spacer (IGS) play an important role in enhancing RNA polymerase I transcription. Despite this functional role and presumed selective constraint, there is surprisingly little sequence similarity among IGS subrepeats of different species. This sequence dissimilarity corresponds with the fast insertion-deletion (indel) rates observed in short mononucleotide microsatellites (here referred to as poly[N] runs, where N is any nucleotide), which are relatively abundant in rDNA IGS subrepeats. Some species have different types of IGS subrepeats that share species-specific poly(N) run patterns. This finding indicates that many IGS subrepeats within species share a common evolutionary history. Furthermore, by aligning sequences after modifying them by the dropout method, i.e., by disregarding poly(N) runs during the sequence aligning step, we sought to uncover evolutionarily shared similarities that fail to be recognized by current alignment programs. To ensure that the improved similarities in the computed alignments are not a chance artifact, we calibrated and corrected the IGS subrepeat sequences for the influence of repeat length and estimated the statistical significance of the alignments (in terms of a stringent p-value) obtained by the dropout method by comparing them to null models constructed using random sequence sets from the same genomes. We found that most diverse kinds of rDNA IGS subrepeats in one species must have been derived from a common ancestral subrepeat, and that it is possible to infer the evolutionary relationships among the IGS subrepeats of different species by comparative genomics methods based on dropout alignments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bach R, Allet B, Crippa M (1981) Sequence organization of the spacer in the ribosomal genes of Xenopus clivii and Xenopus borealis. Nucleic Acids Res 9:5311–5330

    Article  PubMed  CAS  Google Scholar 

  • Baldridge GD, Fallon AM (1992) Primary structure of the ribosomal DNA intergenic spacer from the mosquito, Aedes albopictus. DNA Cell Biol 11:51–59

    PubMed  CAS  Google Scholar 

  • Baldridge GD, Dalton MW, Fallon AM (1992) Is higher-order structure conserved in eukaryotic ribosomal DNA intergenic spacers? J Mol Evol 35:514–523

    Article  PubMed  CAS  Google Scholar 

  • Barker RF, Harberd NP, Jarvis MG, Flavell RB (1988) Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. J Mol Biol 201:1–17

    Article  PubMed  CAS  Google Scholar 

  • Bhatia S, Singh Negi M, Lakshmikumaran M (1996) Structural analysis of the rDNA intergenic spacer of Brassica nigra: evolutionary divergence of the spacers of the three diploid Brassica species. J Mol Evol 43:460–468

    Article  PubMed  CAS  Google Scholar 

  • Black WC, McLain DK, Rai KS (1989) Patterns of variation in the rDNA cistron within and among world populations of a mosquito, Aedes albopictus (Skuse). Genetics 121:539–550

    PubMed  CAS  Google Scholar 

  • Borisjuk N, Hemleben V (1993) Nucleotide sequence of the potato rDNA intergenic spacer. Plant Mol Biol 21:381–384

    Article  PubMed  CAS  Google Scholar 

  • Cordesse F, Cooke R, Tremousaygue D, Grellet F, Delseny M (1993) Fine structure and evolution of the rDNA intergenic spacer in rice and other cereals. J Mol Evol 36:369–379

    Article  PubMed  CAS  Google Scholar 

  • Crease TJ (1993) Sequence of the intergenic spacer between the 28S and 18S rRNA-encoding genes of the crustacean, Daphnia pulex. Gene 134:245–249

    Article  PubMed  CAS  Google Scholar 

  • Cross NC, Dover GA (1987) Tsetse fly rDNA: an analysis of structure and sequence. Nucleic Acids Res 15:15–30

    Article  PubMed  CAS  Google Scholar 

  • Cunningham PR, Weitzmann CJ, Ofengand J (1991) SP6 RNA polymerase stutters when initiating from an AAA... sequence. Nucleic Acids Res 19:4669–4673

    Article  PubMed  CAS  Google Scholar 

  • Da Rocha PS, Bertrand H (1995) Structure and comparative analysis of the rDNA intergenic spacer of Brassica rapa. Implications for the function and evolution of the Cruciferae spacer. Eur J Biochem 229:550–557

    Article  PubMed  CAS  Google Scholar 

  • Degnan BM, Yan J, Hawkins CJ, Lavin MF (1990) rRNA genes from the lower chordate Herdmania momus: structural similarity with higher eukaryotes. Nucleic Acids Res 18:7063–7070

    Article  PubMed  CAS  Google Scholar 

  • De Lucchini S, Andronico F, Nardi I (1997) Molecular structure of the rDNA intergenic spacer (IGS) in Triturus: implications for the hypervariability of rDNA loci. Chromosoma 106:315–326

    Article  PubMed  Google Scholar 

  • Denver DR, Morris K, Kewalramani A, Harris KE, Chow A, Estes S, Lynch M, Thomas WK (2004) Abundance, distribution, and mutation rates of homopolymeric nucleotide runs in the genome of Caenorhabditis elegans. J Mol Evol 58:584–595

    Article  PubMed  CAS  Google Scholar 

  • Dover GA, Tautz D (1986) Conservation and divergence in multigene families: alternatives to selection and drift. Philos Trans R Soc Lond B Biol Sci 312:275–289

    Article  PubMed  CAS  Google Scholar 

  • Ellis RE, Sulston JE, Coulson AR (1986) The rDNA of C. elegans: sequence and structure. Nucleic Acids Res 14:2345–2364

    Article  PubMed  CAS  Google Scholar 

  • Fondon JW 3rd, Garner HR (2004) Molecular origins of rapid and continuous morphological evolution. Proc Natl Acad Sci USA 101:18058–18063

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara H, Ishikawa H (1987) Structure of the Bombyx mori rDNA: initiation site for its transcription. Nucleic Acids Res 15:1245–1258

    Article  PubMed  CAS  Google Scholar 

  • Ganal M, Torres R, Hemleben V (1988) Complex structure of the ribosomal DNA spacer of Cucumis sativus (cucumber). Mol Gen Genet 212:548–554

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez IL, Wu S, Li WM, Kuo BA, Sylvester JE (1992) Human ribosomal RNA intergenic spacer sequence. Nucleic Acids Res 20:5846

    Article  PubMed  CAS  Google Scholar 

  • Grellet F, Delcasso D, Panabieres F, Delseny M (1986) Organization and evolution of a higher plant alphoid-like satellite DNA sequence. J Mol Biol 187:495–507

    Article  PubMed  CAS  Google Scholar 

  • Gruendler P, Unfried I, Pointner R, Schweizer D (1989) Nucleotide sequence of the 25S–18S ribosomal gene spacer from Arabidopsis thaliana. Nucleic Acids Res 17:6395–6396

    Article  PubMed  CAS  Google Scholar 

  • Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191

    PubMed  CAS  Google Scholar 

  • Jacques JP, Hausmann S, Kolakofsky D (1994) Paramyxovirus mRNA editing leads to G deletions as well as insertions. EMBO J 13:5496–5503

    PubMed  CAS  Google Scholar 

  • Kahl G (1988) Architecture of eukaryotic genes. VCH Verlagsgesellschaft, Weinheim, Germany/New York

    Google Scholar 

  • Kato A, Yakura K, Tanifuji S (1984) Sequence analysis of Vicia faba repeated DNA, the FokI repeat element. Nucleic Acids Res 12:6415–6426

    Article  PubMed  CAS  Google Scholar 

  • King K, Torres RA, Zentgraf U, Hemleben V (1993) Molecular evolution of the intergenic spacer in the nuclear ribosomal RNA genes of cucurbitaceae. J Mol Evol 36:144–152

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD, Rae PM (1982) Nontranscribed spacer sequences promote in vitro transcription of Drosophila ribosomal DNA. Nucleic Acids Res 10:6879–6886

    Article  PubMed  CAS  Google Scholar 

  • Koller HT, Frondorf KA, Maschner PD, Vaughn JC (1987) In vivo transcription from multiple spacer rRNA gene promoters during early development and evolution of the intergenic spacer in the brine shrimp Artemia. Nucleic Acids Res 15:5391–5411

    Article  PubMed  CAS  Google Scholar 

  • Kuehn M, Arnheim N (1983) Nucleotide sequence of the genetically labile repeated elements 5′ to the origin of mouse rRNA transcription. Nucleic Acids Res 11:211–224

    Article  PubMed  CAS  Google Scholar 

  • Kwon OY, Ishikawa H (1992) Unique structure in the intergenic and 5′ external transcribed spacer of the ribosomal RNA gene from the pea aphid Acyrthosiphon pisum. Eur J Biochem 206:935–940

    Article  PubMed  CAS  Google Scholar 

  • Labhart P, Reeder RH (1984) Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis. Cell 37:285–289

    Article  PubMed  CAS  Google Scholar 

  • Lakshmikumaran M, Negi MS (1994) Structural analysis of two length variants of the rDNA intergenic spacer from Eruca sativa. Plant Mol Biol 24:915–927

    Article  PubMed  CAS  Google Scholar 

  • MacIntyre RJ (1985) Molecular evolutionary genetics. Plenum Press, New York

    Google Scholar 

  • Mandal RK (1984) The organization and transcription of eukaryotic ribosomal RNA genes. Prog Nucleic Acid Res Mol Biol 31:115–160

    PubMed  CAS  Google Scholar 

  • Morgan GT, Middleton KM (1988) Organization and sequence of the compact rDNA spacer of the tailed frog, Ascaphus truei. Nucleic Acids Res 16:10917

    Article  PubMed  CAS  Google Scholar 

  • Moss T, Boseley PG, Birnstiel ML (1980) More ribosomal spacer sequences from Xenopus laevis. Nucleic Acids Res 8:467–485

    Article  PubMed  CAS  Google Scholar 

  • Murtif VL, Rae PM (1985) In vivo transcription of rDNA spacers in Drosophila. Nucleic Acids Res 13:3221–3239

    Article  PubMed  CAS  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi H, Yamamoto MT (2004) The structure of a single unit of ribosomal RNA gene (rDNA) including intergenic subrepeats in the Australian bulldog ant Myrmecia croslandi (Hymenoptera: Formicidae). Zool Sci 21:139–146

    Article  PubMed  CAS  Google Scholar 

  • Peyretaillade E, Biderre C, Peyret P, Duffieux F, Metenier G, Gouy M, Michot B, Vivares CP (1998) Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSU rRNA reduced to the universal core. Nucleic Acids Res 26:3513–3520

    Article  PubMed  CAS  Google Scholar 

  • Pikaard CS, Reeder RH (1988) Sequence elements essential for function of the Xenopus laevis ribosomal DNA enhancers. Mol Cell Biol 8:4282–4288

    PubMed  CAS  Google Scholar 

  • Polanco C, Perez de la Vega M (1994) The structure of the rDNA intergenic spacer of Avena sativa L.: a comparative study. Plant Mol Biol 25:751–756

    Article  PubMed  CAS  Google Scholar 

  • Reeder RH (1989) Regulatory elements of the generic ribosomal gene. Curr Opin Cell Biol 1:466–474

    Article  PubMed  CAS  Google Scholar 

  • Reeder RH (1990) rRNA synthesis in the nucleolus. Trends Genet 6:390–395

    Article  PubMed  CAS  Google Scholar 

  • Robinett CC, O’Connor A, Dunaway M (1997) The repeat organizer, a specialized insulator element within the intergenic spacer of the Xenopus rRNA genes. Mol Cell Biol 17:2866–2875

    PubMed  CAS  Google Scholar 

  • Rogers SO, Beaulieu GC, Bendich AJ (1993) Comparative studies of gene copy number. Methods Enzymol 224:243–251

    Article  PubMed  CAS  Google Scholar 

  • Ruiz Linares A, Hancock JM, Dover GA (1991) Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments. J Mol Biol 219:381–390

    Article  PubMed  CAS  Google Scholar 

  • Ryu SH, Do YK, Hwang UW, Choe CP, Kim W (1999) Ribosomal DNA intergenic spacer of the swimming crab, Charybdis japonica. J Mol Evol 49:806–809

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Puchta W, Gunther I, Sanger HL (1989) Nucleotide sequence of the intergenic spacer (IGS) of the tomato ribosomal DNA. Plant Mol Biol 13:251–253

    Article  PubMed  CAS  Google Scholar 

  • Schnare MN, Gray MW (1982) Nucleotide sequence of an exceptionally long 5.8S ribosomal RNA from Crithidia fasciculata. Nucleic Acids Res 10:2085–2092

    Article  PubMed  CAS  Google Scholar 

  • Simeone A, La Volpe A, Boncinelli E (1985) Nucleotide sequence of a complete ribosomal spacer of D. melanogaster. Nucleic Acids Res 13:1089–1101

    Article  PubMed  CAS  Google Scholar 

  • Sollner-Webb B, Tower J (1986) Transcription of cloned eukaryotic ribosomal RNA genes. Annu Rev Biochem 55:801–830

    Article  PubMed  CAS  Google Scholar 

  • Sonnhammer EL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167:GC1–GC10

    Article  PubMed  CAS  Google Scholar 

  • Stark GR, Debatisse M, Giulotto E, Wahl GM (1989) Recent progress in understanding mechanisms of mammalian DNA amplification. Cell 57:901–908

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Tanifuji S, Komeda Y, Kato A (1996) Structural and functional characterization of the intergenic spacer region of the rDNA in Daucus carota. Plant Cell Physiol 37:233–238

    PubMed  CAS  Google Scholar 

  • Takaiwa F, Kikuchi S, Oono K (1990) The complete nucleotide sequence of the intergenic spacer between 25S and 17S rDNAs in rice. Plant Mol Biol 15:933–935

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Tautz C, Webb D, Dover GA (1987) Evolutionary divergence of promoters and spacers in the rDNA family of four Drosophila species. Implications for molecular coevolution in multigene families. J Mol Biol 195:525–542

    Article  PubMed  CAS  Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  PubMed  CAS  Google Scholar 

  • Tower J, Henderson SL, Dougherty KM, Wejksnora PJ, Sollner-Webb B (1989) An RNA polymerase I promoter located in the CHO and mouse ribosomal DNA spacers: functional analysis and factor and sequence requirements. Mol Cell Biol 9:1513–1525

    PubMed  CAS  Google Scholar 

  • Unfried K, Schiebel K, Hemleben V (1991) Subrepeats of rDNA intergenic spacer present as prominent independent satellite DNA in Vigna radiata but not in Vigna angularis. Gene 99:63–68

    Article  PubMed  CAS  Google Scholar 

  • Wu CC, Fallon AM (1998) Analysis of a ribosomal DNA intergenic spacer region from the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 7:19–29

    Article  PubMed  CAS  Google Scholar 

  • Yavachev LP, Georgiev OI, Braga EA, Avdonina TA, Bogomolova AE, Zhurkin VB, Nosikov VV, Hadjiolov AA (1986) Nucleotide sequence analysis of the spacer regions flanking the rat rRNA transcription unit and identification of repetitive elements. Nucleic Acids Res 14:2799–810

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seongho Ryu or Bud Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, S., Do, Y., Fitch, D.H.A. et al. Dropout Alignment Allows Homology Recognition and Evolutionary Analysis of rDNA Intergenic Spacers. J Mol Evol 66, 368–383 (2008). https://doi.org/10.1007/s00239-008-9090-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9090-8

Keywords

Navigation