Skip to main content
Log in

Replacement of the Arginine Biosynthesis Operon in Xanthomonadales by Lateral Gene Transfer

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The role of lateral gene transfer (LGT) in prokaryotes has been shown to rapidly change the genome content, providing new gene tools for environmental adaptation. Features related to pathogenesis and resistance to strong selective conditions have been widely shown to be products of gene transfer between bacteria. The genomes of the γ-proteobacteria from the genus Xanthomonas, composed mainly of phytopathogens, have potential genomic islands that may represent imprints of such evolutionary processes. In this work, the evolution of genes involved in the pathway responsible for arginine biosynthesis in Xanthomonadales was investigated, and several lines of evidence point to the foreign origin of the arg genes clustered within a potential operon. Their presence inside a potential genomic island, bordered by a tRNA gene, the unusual ranking of sequence similarity, and the atypical phylogenies indicate that the metabolic pathway for arginine biosynthesis was acquired through LGT in the Xanthomonadales group. Moreover, although homologues were also found in Bacteroidetes (Flavobacteria group), for many of the genes analyzed close homologues are detected in different life domains (Eukarya and Archaea), indicating that the source of these arg genes may have been outside the Bacteria clade. The possibility of replacement of a complete primary metabolic pathway by LGT events supports the selfish operon hypothesis and may occur only under very special environmental conditions. Such rare events reveal part of the history of these interesting mosaic Xanthomonadales genomes, disclosing the importance of gene transfer modifying primary metabolism pathways and extending the scenario for bacterial genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barends TR, Polderman-Tijmes JJ, Jekel PA, Hensgens CM, de Vries EJ, Janssen DB, Dijkstra BW (2003) The sequence and crystal structure of the alpha-amino acid ester hydrolase from Xanthomonas citri define a new family of beta-lactam antibiotic acylases. J Biol Chem 278:23076–23084

    Article  PubMed  CAS  Google Scholar 

  • Comas I, Moya A, Azad RK, Lawrence JG, Gonzalez-Candelas F (2006) The evolutionary origin of Xanthomonadales genomes and the nature of the horizontal gene transfer process. Mol Biol Evol 23:2049–2057

    Article  PubMed  CAS  Google Scholar 

  • Cunin R, Glansdorff N, Pierard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352

    PubMed  CAS  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  PubMed  CAS  Google Scholar 

  • Doolittle RF (2002) Gene transfers between distantly related organisms. In: Syvanen M, Kado CI (eds) Horizontal gene transfer. Academic Press, London, pp 269–275

    Chapter  Google Scholar 

  • Felsenstein J (1989) Phylogeny inference package. Cladistris 5:164–166

    Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  • Glansdorff N (1987) Biosynthesis of arginine and polyamines. In: Neidhardt FC, Ingraham JL, Brooks, Low K, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium cellular and molecular biology. American Society for Microbiology, Washington, DC, pp 321–344

    Google Scholar 

  • Haft DH, Selengut JD, Brinkac LM, Zafar N, White O (2005) Genome Properties: a system for the investigation of prokaryotic genetic content for microbiology, genome annotation and comparative genomics. Bioinformatics 21:293–306

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG (1999a) Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2:519–523

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG (1999b) Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr Opin Genet Dev 9:642–648

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Roth JR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:1843–1860

    PubMed  CAS  Google Scholar 

  • Lima WC, Paquola A, Varani AM, Van Sluys MA, Menck CFM (2008) Laterally transfered genomic islands in Xanthomonadales related to pathogenicity and primary metabolism. FEMS Microbial Lett (in press)

  • Lima WC, Van-Sluys MA, Menck CFM (2005) Non-gamma-proteobacteria gene islands contribute to the Xanthomonas genome. OMICS 9:160–172

    Article  PubMed  CAS  Google Scholar 

  • Martins-Pinheiro M, Galhardo RS, Lage C, Lima-Bessa KM, Aires KA, Menck CF (2004) Different patterns of evolution for duplicated DNA repair genes in bacteria of the Xanthomonadales group. BMC Evol Biol 4:29

    Article  PubMed  Google Scholar 

  • Mongkolsuk S, Praituan W, Loprasert S, Fuangthong M, Chamnongpol S (1998) Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J Bacteriol 180:2636–2643

    PubMed  CAS  Google Scholar 

  • Morizono H, Cabrera-Luque J, Shi D, Gallegos R, Yamaguchi S, Yu X, Allewell NM, Malamy MH, Tuchman M (2006) Acetylornithine transcarbamylase: a novel enzyme in arginine biosynthesis. J Bacteriol 188:2974–2982

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. Embnew News 4:14

    Google Scholar 

  • Ochman H (2001) Lateral and oblique gene transfer. Curr Opin Genet Dev 11:616–619

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Omelchenko MV, Makarova KS, Wolf YI, Rogozin IB, Koonin EV (2003) Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol 4:R55

    Article  PubMed  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O (2001) The comprehensive microbial resource. Nucleic Acids Res 29:123–125

    Article  PubMed  CAS  Google Scholar 

  • Qu Q, Morizono H, Shi D, Tuchman M, Caldovic L (2007) A novel bifunctional N-acetylglutamate synthase-kinase from Xanthomonas campestris that is closely related to mammalian N-acetylglutamate synthase. BMC Biochem 8:4

    Article  PubMed  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Sunyaev S, Bork P, Dandekar T (2003) Metabolites: A helping hand for pathway evolution? Trends Biochem Sci 28:336–341

    Article  PubMed  CAS  Google Scholar 

  • Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32:D431–D433

    Article  PubMed  CAS  Google Scholar 

  • Shi D, Morizono H, Yu X, Roth L, Caldovic L, Allewell NM, Malamy MH, Tuchman M (2005a) Crystal structure of N-acetylornithine transcarbamylase from Xanthomonas campestris: a novel enzyme in a new arginine biosynthetic pathway found in several eubacteria. J Biol Chem 280:14366–14369

    Article  PubMed  CAS  Google Scholar 

  • Shi D, Yu X, Roth L, Morizono H, Hathout Y, Allewell NM, Tuchman M (2005b) Expression, purification, crystallization and preliminary X-ray crystallographic studies of a novel acetylcitrulline deacetylase from Xanthomonas campestris. Acta Crystallogr 61:676–679

    Google Scholar 

  • Shi D, Caldovic L, Jin Z, Yu X, Qu Q, Roth L, Morizono H, Hathout Y, Allewell NM, Tuchman M (2006) Expression, crystallization and preliminary crystallographic studies of a novel bifunctional N-acetylglutamate synthase/kinase from Xanthomonas campestris homologous to vertebrate N-acetylglutamate synthase. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:1218–1222

    Article  PubMed  Google Scholar 

  • Sung YC, Fuchs JA (1988) Characterization of the cyn operon in Escherichia coli K12. J Biol Chem 263:14769–14775

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Vulic M, Lenski RE, Radman M (1999) Mutation, recombination, and incipient speciation of bacteria in the laboratory. Proc Natl Acad Sci USA 96:7348–7351

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Liang Z, Legrain C, Rüger HJ, Glansdorff N (2000) Evolution of arginine biosynthesis in the bacterial domain: novel gene-enzyme relationships from psychrophilic Moritella strains (Vibrionaceae) and evolutionary significance of N-α-acetyl ornithinase. J Bacteriol 182:1609–1615

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPESP (São Paulo, SP, Brazil) and CNPq (Brasília, DF, Brazil). W.C.L. has a fellowship from FAPESP, and C.F.M.M. is a Fellow of the John Simon Guggenheim Memorial Foundation (New York).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos F. M. Menck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, W.C., Menck, C.F.M. Replacement of the Arginine Biosynthesis Operon in Xanthomonadales by Lateral Gene Transfer. J Mol Evol 66, 266–275 (2008). https://doi.org/10.1007/s00239-008-9082-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9082-8

Keywords

Navigation