Skip to main content
Log in

On the Physical Basis of the Amino Acid Polar Requirement

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Understanding how codons became associated with their specific amino acids is fundamental to deriving a theory for the origin of the genetic code. Carl Woese and coworkers designed a series of experiments to test associations between amino acids and nucleobases that may have played a role in establishing the genetic code. Through these experiments it was found that a property of amino acids called the polar requirement (PR) is correlated with the organization of the codon table. No other property of amino acids has been found that correlates with the codon table as well as PR, indicating that PR is uniquely related to the modern genetic code. Using molecular dynamics simulations of amino acids in solutions of water and dimethylpyridine used to experimentally measure PR, we show that variations in the partitioning between the two phases as described by radial distribution functions correlate well with the measured PRs. Partition coefficients based on probability densities of the amino acids in each phase have the linear behavior with base concentration as suggested by PR experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alff-Steinberger C (1969) The genetic code and error transmission. Proc Natl Acad Sci USA 64:584–591

    Article  PubMed  CAS  Google Scholar 

  • Allen M, Tildesley D (1987) Computer simulation of liquids. Clarendon Press, Oxford

    Google Scholar 

  • Baaske P, Weinert FM, Duhr S, Lemke KH, Russell MJ, Braun D (2007) Extremeaccumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci USA 104:9346–9351

    Article  PubMed  CAS  Google Scholar 

  • Butler T, Goldenfeld N, Mathew D, Luthey-Schulten Z (2008) Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement. arXiv:0712.3332v2[q-bio.PE]

  • Campo MG (2006) Molecular dynamics simulation of glycine zwitterion in aqueous solution. J Chem Phys 125:114511

    Article  PubMed  Google Scholar 

  • Caporaso JG, Yarus M, Knight R (2005) Error minimization and coding triplet/binding site associations are independent features of the canonical genetic code. J Mol Evol 61:597–607

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Arkhipov A, Braun R, Schulten K (2006) Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. Biophys J 91:1844–1857

    Article  PubMed  CAS  Google Scholar 

  • Consden R, Gordon AH, Martin AJP (1944) Qualitative analysis of proteins: a partition chromatographic method using paper. BCHJ 38(3):224–232

    CAS  Google Scholar 

  • Di Giulio M (1989) The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol 29:288–293

    Article  PubMed  CAS  Google Scholar 

  • England A, Cohn EJ (1935) Studies in the physical chemistry of amino acids, peptides and related substances in the distribution coefficients of amino acids between water and butyl alcohol. J Am Chem Soc 57:634–637

    Article  CAS  Google Scholar 

  • Ferris J, Joshi P, Wang K-J, Miyakawa S, Huang W (2004) Catalysis in prebiotic chemistry: application to the synthesis of RNA oligomers. Adv Space Res 33:100–105

    Article  CAS  Google Scholar 

  • Freeland SJ, Hurst LD (1998) The genetic code is one in a million. J Mol Evol 47(3):238–248

    Article  PubMed  CAS  Google Scholar 

  • Freeland SJ, Knight RD, Landwebber LF, Hurst LD (2000) Early fixation of an optimal genetic code. Mol Biol Evol 17(4):511–518

    PubMed  CAS  Google Scholar 

  • Haig D, Hurst LD (1991) A quantitative measure of error minimization in the genetic code. J Mol Evol 33:412–417

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Ferris JP (2003) Synthesis of 35–40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem Commun 12:1458–1459

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • Knight RD (2001) The origin and evolution of the genetic code: statistical and experimental investigations. PhD thesis, Princeton University

  • MacKerell AD Jr, Banavali N (2000) All-atom empirical force field for nucleic acids: 2. Application to molecular dynamics simulations of DNA and RNA in solution. J Comp Chem 21:105–120

    Article  CAS  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott M, Dunbrack R Jr, Evanseck J, Field M, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F, Mattos C, Michnick S, Ngo T, Nguyen D, Prodhom B, Reiher W III, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Martin AJP, Synge RLM (1941) A new form of chromatogram employing two liquid phases. 1. A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem J 35:1358–1368

    PubMed  CAS  Google Scholar 

  • McQuarrie DA (2000) Statistical mechanics, 2nd edn. University Science Books, Sausalito, CA

    Google Scholar 

  • Miller JC, Rallison JM (2007) Interfacial instability between sheared elastic liquids in a channel. J Non-Newton Fluid Mech 143:71–78

    Article  CAS  Google Scholar 

  • Mirzaev SZ, Behrends R, Heimburg T, Haller J, Kaatze U (2006a) Critical behavior of 2,6-dimethylpyridine-water: measurements of specific heat, dynamic light scattering, and shear viscosity. J Chem Phys 124:144517

    Article  PubMed  CAS  Google Scholar 

  • Mirzaev SZ, Iwanowski I, Zaitdinov M, Kaatze U (2006b) Critical dynamics and kinetics of elementary reactions of 2,6-dimethylpyridine-water. Chem Phys Lett 431:308–312

    Article  CAS  Google Scholar 

  • Nigmatullin R, Lovitt R, Wright C, Linder M, Nakari-Setälä T, Gama M (2004) Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains. Colloids Surf B Biointerfaces 35:125–135

    Article  PubMed  CAS  Google Scholar 

  • Nimlos MR, Matthews JF, Crowley MF, Walker RC, Chukkapalli G, Brady JW, Adney WS, Cleary JM, Zhong L, Himmel ME (2007) Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface. Protein Eng Des Sel 20:1–9

    Article  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26:1781–1802

    Article  CAS  Google Scholar 

  • Sotomayor M, Vásquez V, Perozo E, Schulten K (2007) Ion conduction through MscS as determined by electrophysiology and simulation. Biophys J 92:886–902

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1973) Evolution of the genetic code. Naturwissenschaften 60(10):447–459

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Dugre DH, Dugre SA, Kondo M, Saxinger WC (1966a) On the fundamental nature and evolution of the genetic code. Cold Spring Harb Symp Quant Biol 31:723–736

    PubMed  CAS  Google Scholar 

  • Woese CR, Dugre DH, Saxinger WC, Dugre SA (1966b) The molecular basis for the genetic code. Proc Natl Acad Sci USA 55(4):966–974

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Olsen GJ, Ibba M, Söoll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64:202–236

    Article  PubMed  CAS  Google Scholar 

  • Yarus M, Caporaso JG, Knight R (2005) Origins of the genetic code: the escaped triplet theory. Annu Rev Biochem 74:179–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NSF-FIBR Grant SBCSF0526747. Some simulations were performed at the National Center for Supercomputing Applications through Teragrid LRAC No. MCA03S027S and through the University of Illinois School of Chemical Sciences computational resource NSF CRIF 05-41659. We wish to thank Carl Woese, Patrick O’Donoghue, and members of the Luthey-Schulten group for helpful discussions. Jordi Cohen provided analysis software for the occupancy probability studies, and Elijah Roberts assisted in parallelizing the RDF analysis software. Nigel Goldenfeld and Tom Butler provided helpful discussions on genetic code optimality. NAMD and VMD were developed by the Theoretical and Computational Biophysics Group of the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaida Luthey-Schulten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, D.C., Luthey-Schulten, Z. On the Physical Basis of the Amino Acid Polar Requirement. J Mol Evol 66, 519–528 (2008). https://doi.org/10.1007/s00239-008-9073-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9073-9

Keywords

Navigation