Skip to main content
Log in

Experimental Evidence That GNA and TNA Were Not Sequential Polymers in the Prebiotic Evolution of RNA

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Systematic investigation into the chemical etiology of ribose has led to the discovery of glycerol nucleic acid (GNA) and threose nucleic acid (TNA) as possible progenitor candidates of RNA in the origins of life. Coupled with their chemical simplicity, polymers for both systems are capable of forming stable Watson-Crick antiparallel duplex structures with themselves and RNA, thereby providing a mechanism for the transfer of genetic information between successive genetic systems. Investigation into whether both polymers arose independently or descended from a common evolutionary pathway would provide additional constraints on models that describe the emergence of a hypothetical RNA world. Here we show by thermal denaturation that complementary GNA and TNA mixed sequence polymers are unable, even after prolonged incubation times, to adopt stable helical structures by intersystem cross-pairing. This experimental observation suggests that GNA and TNA, whose structures derive from one another, were not consecutive polymers in the same evolutionary pathway to RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo OL, Andrews RS (1996) Synthesis of propane-2,3-diol combinatorial monomers. Tetrahedron Lett 37:3931–3139

    Article  CAS  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920

    Article  PubMed  CAS  Google Scholar 

  • Chaput JC, Switzer C (2000) Nonenzymatic oligomerization on tempaltes containing phosphodiester-linked acyclic glycerol nucleic acid analogues. J Mol Evol 51:464–470

    PubMed  CAS  Google Scholar 

  • Cooper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrel L (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early earth. Nature 414:879–883

    Article  PubMed  CAS  Google Scholar 

  • Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284:2118–2124

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Holý A (1975) Aliphatic analogues of nucleosides, nucleotides, and oligonucleotides. Collect Czech Chem Commun 40:187–214

    Google Scholar 

  • Horhota A, Zou K, Ichida JK, Yu B, McLaughlin LW, Szostak JW, Chaput JC (2005) Kinetic analysis of an efficient DNA-dependent TNA polymerase. J Am Chem Soc 127:7427–7434

    Article  PubMed  CAS  Google Scholar 

  • Horhota AT, Szostak JW, McLaughlin LW (2006) Glycerol nucleoside triphosphates: Synthesis and polymerase substrate activities. Organ Lett 8:5345–5347

    Article  CAS  Google Scholar 

  • Ichida JK, Zou K, Horhota AT, Yu B, McLaughlin LW, Szostak JW (2005) An in vitro selection system for TNA. J Am Chem Soc 127:2802–2803

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF (1989) RNA evolution and the origins of life. Nature 338:217–224

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci USA 84:4398–4402

    Article  PubMed  CAS  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence by Tetrahymena. Cell 31:147–157

    Article  PubMed  CAS  Google Scholar 

  • Marky LA, Breslauer KJ (1987) Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26:1601–1620

    Article  PubMed  CAS  Google Scholar 

  • Schlonvogt I, Pitsch S, Lesuer C, Eschenmoser A, Jaun B, Wolf RM (1996) Pyranosyl-RNA (‘p-RNA’): NMR and molecular dynamics study of the duplex formed by self-pairing of ribopyranosyl-(C-G-A-A-T-T-C-G). Helv Chim Acta 79:2316–2345

    Article  Google Scholar 

  • Schneider KC, Benner SA (1990) Oligonucleotides containing flexible nucleoside analogues. J Am Chem Soc 112:453–455

    Article  CAS  Google Scholar 

  • Schöning K-U, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A (2000) Chemical etiology of nucleic acid structure: The α-threofuranosyl-(3′→2′) oligonucleotide system. Science 290:1347–1351

    Article  PubMed  Google Scholar 

  • Schöning K-U, Scholz P, Wu X, Guntha S, Guillermo D, Krishnamurthy R, Eschenmoser A (2002) The α-L-threofuranosyl-(3′→2′)-oligonucleotide system(‘TNA’): Synthesis and pairing properties. Helv Chim Acta 85:4111–4153

    Article  Google Scholar 

  • Wilds CJ, Wawrzak Z, Krishnamurthy R, Eschenmoser A, Egli M (2002) Crystal structure of a B-form DNA duplex containing (L)-a-threofuranosyl (3′-2′) nucleosides: a four-carbon sugar is easily accommodated into the backbone of DNA. J Am Chem Soc 124:13716–13721

    Article  PubMed  CAS  Google Scholar 

  • Wimberly BT, Brodersen DE, Clemons WM, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    Article  PubMed  CAS  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Nature 292:883–896

    CAS  Google Scholar 

  • Zhang L, Peritz A, Meggers E (2005) A simple glycol nucleic acid. J Am Chem Soc 127:4174–4175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by new laboratory start-up funds from The Biodesign Institute at Arizona State University to J.C.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Chaput.

Additional information

Reviewing Editor: Dr. Niles Lehman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YW., Zhang, S., McCullum, E.O. et al. Experimental Evidence That GNA and TNA Were Not Sequential Polymers in the Prebiotic Evolution of RNA. J Mol Evol 65, 289–295 (2007). https://doi.org/10.1007/s00239-007-9017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-9017-9

Keywords

Navigation