Skip to main content
Log in

The Effect of Local Nucleotides on Synonymous Codon Usage in the Honeybee (Apis mellifera L.) Genome

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Using all currently predicted coding regions in the honeybee genome, a novel form of synonymous codon bias is presented that affects the usage of particular codons dependent on the surrounding nucleotides in the coding region. Nucleotides at the third codon site are correlated, dependent on their weak (adenine [A] or thyamine [T]) versus strong (guanine [G] or cytosine [C]) status, to nucleotides on the first codon site which are dependent on their purine (A/G) versus pyrimidine (C/T) status. In particular, for adjacent third and first site nucleotides, weak–pyrimidine and strong–purine nucleotide combinations occur much more frequently than the underabundant weak–purine and strong–pyrimidine nucleotide combinations. Since a similar effect is also found in the noncoding regions, but is present for all adjacent nucleotides, this coding effect is most likely due to a genome-wide context-dependent mutation error correcting mechanism in combination with selective constraints on adjacent first and second nucleotide pairs within codons. The position-dependent relationship of synonymous codon usage is evidence for a novel form of codon position bias which utilizes the redundancy in the genetic code to minimize the effect of nucleotide mutations within coding regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Akashi H, Eyre-Walker A (1998) Translational selection and molecular evolution. Curr Opin Genet Dev 8:688–693

    Article  PubMed  CAS  Google Scholar 

  • Amdan GV, Omholt SW (2002) The regulatory anatomy of honeybee lifespan. J Theor Biol 216:209–228

    Article  Google Scholar 

  • Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419–429

    Article  PubMed  CAS  Google Scholar 

  • Blake RD, Hess ST, Nicholson-Tuell J (1992) The influence of nearest neighbors on the rate and pattern of spontaneous point mutations. J Mol Evol 34:189–200

    Article  PubMed  CAS  Google Scholar 

  • Berg OG, Silva PJN (1997) Codon bias in Escherichia coli:the influence of codon context on mutation and selection. Nucleic Acids Res 25(7):1397–1404

    Article  PubMed  CAS  Google Scholar 

  • Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907

    PubMed  CAS  Google Scholar 

  • Crick FHC (1966) Codon-anticodon pairing:the wobble hypothesis. J Mol Biol 19:548–555

    Article  PubMed  CAS  Google Scholar 

  • Duret L (2000) tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet 16:287–289

    Article  PubMed  CAS  Google Scholar 

  • Evans JD (2004) Transcriptional immune responses by honey bee larvae during invasion by the bacterial pathogen, Paenibacillus larvae. J Invertebr Pathol 85:105–111

    Article  PubMed  CAS  Google Scholar 

  • Evans JD, Gundersen-Rindal D (2003) Beenomes to Bombyx:future directions in applied insect genomics. Genome Biol 4:107

    Article  PubMed  Google Scholar 

  • Francino MP, Chao L, Riley MA, Ochman H (1996) Asymetries generated by transcription-coupled repair in enterobacterial genes. Science 272:107–109

    Article  PubMed  CAS  Google Scholar 

  • Fryxell KJ, Moon WJ (2005) CpG mutation rates in the human genome are highly dependent on local GC content. Mol Biol Evol 22(3):650–658

    Article  PubMed  CAS  Google Scholar 

  • Fedorov A, Saxonov S, Gilbert W (2002) Regularities of context-dependent codon bias in eukaryotic genes. Nucleic Acids Res 30(5):1192–1197

    Article  PubMed  CAS  Google Scholar 

  • Gouy M (1987) Condon contexts in Enterobacterial and Coliphage genes. Mol Biol Evol 4(4):426–444

    PubMed  CAS  Google Scholar 

  • Grantham R, Gautier C, Gouy M, Mercier R, Pave A (1980) Codon catalog usage and the genome hypothesis. Nucleic Acids Res 8:49–62

    Google Scholar 

  • Gregory PG, Evans JD, Rinderer T, De Guzman L (2005) Conditional immune-gene suppression of honeybees parasitized by Varroa mites. J Insect Sci 5:1–5

    Article  Google Scholar 

  • Grosjean H, Fiers W (1982) Preferential codon usage in prokaryotic genes:the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed gene. Gene 18:199–209

    Article  PubMed  CAS  Google Scholar 

  • Hambuch TM, Parsch J (2005) Patterns of synonymous codon usage in Drosophila melanogaster genes with sex-biased expression. Genetics 170:1691–1700

    Article  PubMed  CAS  Google Scholar 

  • Hanai R, Wada A (1990) Doublet preference and gene evolution. J Mol Evol 30:109–115

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg M (2004) Mushroombody memoir: from maps to models. Nature 4:266–275

    Google Scholar 

  • Honey bee genome sequencing consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Article  CAS  Google Scholar 

  • Ikemura T (1981) Correlation between the abundances of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes:a proposal for a synonymous codon choice that is optimal for the E. coli translation system. J Mol Biol 151:573–597

    Article  Google Scholar 

  • Ikehara K, Omori Y, Arai R, Hirose A (2002) A novel theory on the origin of the genetic code: a GNC-SNS hypothesis. J Mol Evol 54:530–538

    Article  PubMed  CAS  Google Scholar 

  • Macdónaill DA, Manktelow M (2004) Molecular informatics: quantifying information patterns in the genetic code. Mol Simul 30(5):267–272

    Article  CAS  Google Scholar 

  • Merkl R (2003) A survey of codon and amino acid frequency bias in microbial genomes focusing on translational efficiency. J Mol Evol 57:453–466

    Article  PubMed  CAS  Google Scholar 

  • Morton BR (1998) Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineage. J Mol Evol 46:449–459

    Article  PubMed  CAS  Google Scholar 

  • Morton BR, So BG (2000) Codon usage in plastid gene is correlated with context, position within gene, and amino acid content. J Mol Evol 50(2):184–193

    PubMed  CAS  Google Scholar 

  • Munshaw S, Cutler RW, Wongsiri S, Chantawannakul P (2004) A Genomic-wide analysis of Apis mellifera: insights into diverse high copy number ORFs. J Apic Res 43(4):172–175

    CAS  Google Scholar 

  • Page RE, Peng CYS (2001) Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp Geronotol 36:695–711

    Article  Google Scholar 

  • Petruska J, Goodman MF (1985) Influence of neighboring bases on DNA polymerase insertion and proofreading fidelity. J Biol Chem 260:7533–7539

    PubMed  CAS  Google Scholar 

  • Radman M (1998) DNA replication: one strand may be more equal. Proc Natl Acad Sci USA 95:9718–9719

    Article  PubMed  CAS  Google Scholar 

  • Radman M, Wagner R (1986) Mismatch repair in Escherichia coli. Ann Rev Genet 20:523–538

    Article  PubMed  CAS  Google Scholar 

  • Sancar A (1996) DNA excision repair. Annu Rev Biochem 65:43–81

    Article  PubMed  CAS  Google Scholar 

  • Singer B, Hang B (2000) Nucleic acid sequence and repair: role of adduct, neighbor bases and enzyme specificity. Carcinogenesis 21(6):1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Sueoka N, Kawanishi Y (2000) DNA G+C content of the third codon position and codon usage biases of human gene. Gene 261:53–62

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  PubMed  CAS  Google Scholar 

  • Whitfield CW, Cziko AM, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:296–299

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Sharp PM, Li W-H (1989) Mutation rates differ among regions of the mammalian genome. Nature 337:283–285

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted using funding from a Bard College Research and Travel Grant and the Thailand Research Fund (RMU4980010).We would also like to thank Walker Pett for his efforts in developing PERL routines and Dr. Wanchai Sonthichai and all staff of Department of Biology, Faculty of Science, Chiang Mai University, for providing the facilities used to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panuwan Chantawannakul.

Additional information

[Reviewing Editor: Dr. Brian Morton]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutler, R.W., Chantawannakul, P. The Effect of Local Nucleotides on Synonymous Codon Usage in the Honeybee (Apis mellifera L.) Genome. J Mol Evol 64, 637–645 (2007). https://doi.org/10.1007/s00239-006-0198-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0198-4

Keywords