Skip to main content
Log in

Rapid Evolution, Genetic Variations, and Functional Association of the Human Spermatogenesis-Related Gene NYD-SP12

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

NYD-SP12 is a recently identified spermatogenesis-related gene with a pivotal role in human testis development. In this study, we analyzed between-species divergence and within-species variation of NYD-SP12 in seven representative primate species, four worldwide human populations, and 124 human clinical subjects. Our results indicate that NYD-SP12 evolves rapidly in both the human and the chimpanzee lineages, which is likely caused by Darwinian positive selection and/or sexual selection. We observed significant interpopulation divergence among human populations, which might be due to the varied demographic histories. In the association analysis, we demonstrated significant frequency discrepancy of a synonymous sequence polymorphism among the clinical groups with different sperm traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  CAS  Google Scholar 

  • Anderson MJ, Dixson AF (2002) Sperm competition: motility and the midpiece in primates. Nature 416:496

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL (1966) Population structure and human evolution. Proc R Soc Lond B Biol Sci 164:362–379

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza L, Menozzi P, Piazza A (1994) The history and geography of human genes. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Civetta A, Singh RS (1995) High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species. J Mol Evol 41:1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Comeron JM (1995) A method for estimating the numbers of synonymous and nonsynonymous substitutions per site. J Mol Evol 41:1152–1159

    Article  PubMed  CAS  Google Scholar 

  • Comeron JM (1999) K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15(9):763–764

    Article  PubMed  CAS  Google Scholar 

  • Dorus S, Evans PD, Wyckoff GJ, Choi SS, Lahn BT (2004) Rate of molecular evolution of the seminal protein gene SEMG2 correlates with levels of female promiscuity. Nat Genet 36:1326–1329

    Article  PubMed  CAS  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    PubMed  CAS  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Fullerton SM, Bartoszewicz A, Ybazeta G, Horikawa Y, Bell GI, Kidd KK, Cox NJ, Hudson RR, Di Rienzo A (2002) Geographic and haplotype structure of candidate type 2 diabetes susceptibility variants at the calpain-10 locus. Am J Hum Genet 70:1096–1106

    Article  PubMed  CAS  Google Scholar 

  • Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598

    Article  PubMed  CAS  Google Scholar 

  • Harcourt AH, Purvis A, Liles L (1995) Sperm competition: mating system, not breeding season, affects testes size of primates. Funct Ecol 9:468–476

    Article  Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74:175–195

    PubMed  CAS  Google Scholar 

  • Lu L, Lin M, Xu M, Zhou ZM, Sha JH (2006) Gene functional research using polyethylenimine–mediated in vivo gene transfection into mouse spermatogenic cells. Asian J Androl 8:53–59

    Article  PubMed  CAS  Google Scholar 

  • Majewski J, Cohan FM (1999) Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics 152:1459–1474

    PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • Messier W, Stewart CB (1997) Episodic adaptive evolution of primate lysozymes. Nature 385:151–154

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon A, Tanenbaum DM, Civello D, White TJ, Adams MD, Cargill M (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3:e170

    Article  PubMed  CAS  Google Scholar 

  • Page SL, Goodman M (2001) Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade. Mol Phylogenet Evol 18:14–25

    Article  PubMed  CAS  Google Scholar 

  • Podlaha O, Zhang J (2003) Positive selection on protein-length in the evolution of a primate sperm ion channel. Proc Natl Acad Sci USA 100:12241–12246

    Article  PubMed  CAS  Google Scholar 

  • Rooney AP, Zhang J (1999) Rapid evolution of a primate sperm protein: Relaxation of functional constraint or positive Darwinian selection? Mol Biol Evol 16:706–710

    PubMed  CAS  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3:an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M, Wiehe T (1998) Genetic hitch-hiking in a subdivided population. Genet Res 71:155–160

    Article  PubMed  CAS  Google Scholar 

  • Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3:137–144

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4:e72

    Article  PubMed  Google Scholar 

  • Wang X, Zhang J (2004) Rapid evolution of mammalian X-linked testis-expressed homeobox genes. Genetics 167:879–888

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (1999) WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge University Press, Cambridge

    Google Scholar 

  • Wright S (1950) Genetical structure of populations. Nature 166:247–249

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff GJ, Wang W, Wu CI (2000) Rapid evolution of male reproductive genes in the descent of man. Nature 403:304–309

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Xiao J, Chen J, Li J, Yin L, Zhu H, Zhou Z, Sha J (2003) Identification and characterization of a novel human testis-specific Golgi protein, NYD-SP12. Mol Hum Reprod 9:9–17

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917

    PubMed  CAS  Google Scholar 

  • Yang Z, Swanson WJ (2002) Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 19:49–57

    PubMed  Google Scholar 

  • Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Chinese Academy of Sciences (KSCX1-YW-R-34), the National Natural Science Foundation of China (30370755, 30525028, 30630013), the Natural Science Foundation of Yunnan Province of China, and the National 973 Project of China (2006CB701506). We thank Hui Zhang and Yi-chuan Yu for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Su.

Additional information

[Reviewing Editor: Dr. Manyuan Long]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Zhang, F., Chen, Xh. et al. Rapid Evolution, Genetic Variations, and Functional Association of the Human Spermatogenesis-Related Gene NYD-SP12 . J Mol Evol 65, 154–161 (2007). https://doi.org/10.1007/s00239-006-0127-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0127-6

Keywords

Navigation