Skip to main content
Log in

Evolution of ITS Ribosomal RNA Secondary Structures in Fungal and Algal Symbionts of Selected Species of Cladonia sect. Cladonia (Cladoniaceae, Ascomycotina)

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Evolutionary studies in lichen associations follow that of the fungal symbiont (mycobiont), which is the symbiont after which the lichen is named and forms the majority of the thallus. However, evolution of the algal partner (photobiont) is important to maintain compatibility between symbionts and to optimize productivity of the lichen association. The internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA (rDNA) were examined for primary DNA sequence patterns and for patterns in the secondary structure of the rRNA transcripts in both symbionts of the genus Cladonia. Fungal and algal symbionts show opposite trends in rates of evolution and fragment lengths. Both symbionts showed stronger conservation of the ITS2 structure than the ITS1 structure. Homology was evident in the secondary structures between the two highly divergent chlorophyte and ascomycete taxonomic groups. Most fungal species and all species complexes were polyphyletic. The ITS rDNA of the natural lichen algae from Manitoba and four known algal species is highly similar. The natural lichen algae segregate into highly supported clades by environmental features, suggesting that algae that are already adapted to the environment may associate with germinating fungal propagules in the genus Cladonia. Fungal plasticity may allow the mycobiont to adapt to the environment of the photobiont producing variation in lichen morphology. This might explain the incongruence of phylogenetic patterns between the algal and fungal partners tested and the polyphyly of the fungal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Ahmadjian V (1987) Coevolution in lichens. Ann NY Acad Sci 503:307–315

    Article  Google Scholar 

  • Ahti T (1980) Taxonomic revision of Cladonia gracilis and its allies. Ann Bot Fenn 17:195–243

    Google Scholar 

  • Ahti T (2000) Cladoniaceae, Flora Neotropica Monograph 78. New York Botanical Garden, New York

    Google Scholar 

  • Ahti T, DePriest PT (2001) New combinations of Cladina epithets in Cladonia (Ascomycotina:Cladoniaceae). Mycotaxon 78:499–502

    Google Scholar 

  • Aptroot A, Sipman HJM, van Herk CM (2001) Cladonia monomorpha, a neglected cup lichen from Europe. Lichenologist 33:271–283

    Article  Google Scholar 

  • Armaleo D, Clerc P (1991) Lichen chimeras: DNA analysis suggests that one fungus forms two morphotypes. Exp Mycol 15:1–10

    Article  CAS  Google Scholar 

  • Bakker FT, Olsen JL, Stam WT (1995) Evolution of nuclear rDNA ITS sequences in the Cladophora albida/sericea clade (Chlorophyta). J Mol Evol 40:640–651

    Article  PubMed  CAS  Google Scholar 

  • Beck A (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31:501–510

    Article  Google Scholar 

  • Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720

    Article  CAS  Google Scholar 

  • Brodo IM (1973) Substrate ecology. In Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York, pp 401–441

    Google Scholar 

  • Brodo IM, Sharnoff SD, Sharnoff S (2001) Lichens of North America. Yale University Press, London

    Google Scholar 

  • Coleman AW (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet 19:370–375

    Article  PubMed  CAS  Google Scholar 

  • Coleman AW, Mai JC (1997) Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J Mol Evol 45:168–177

    Article  PubMed  CAS  Google Scholar 

  • Coleman AW, Preparata RM, Mehrotra B, Mai JC (1998) Derivation of the secondary structure of the ITS-1 transcript in Volvocales and its taxonomic correlations. Protist 149:135–146

    Article  Google Scholar 

  • Côté CA, Greer CL, Peculis BA (2002) Dynamic conformational model for the role of ITS2 in pre-rRNA processing in yeast. RNA 8:786–797

    Article  PubMed  CAS  Google Scholar 

  • Culberson CF (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J Chromatogr 72:113–125

    Article  PubMed  CAS  Google Scholar 

  • Culberson CF (1986) Biogenetic relationships of the lichen substances in the framework of systematics. Bryologist 89:91–98

    Article  CAS  Google Scholar 

  • Culberson CF, Culberson WL, Johnson A (1988) Gene flow in lichens. Am J Bot 75:1135–1139

    Article  Google Scholar 

  • Culberson WL (1986) Chemistry and sibling speciation in the lichen-forming fungi: ecological and biological considerations. Bryologist 89:123–131

    Article  CAS  Google Scholar 

  • Esslinger TL (2006) A cumulative checklist for the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada. North Dakota State University, Fargo; available at: http://www.ndsu.nodak.edu/instruct/esslinge/chcklst/chcklst7htm; accessed 10 April 2006

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Freidl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–191

    Google Scholar 

  • Friedl T (1989) Comparative ultrastructure of pyrenoids in Trebouxia (Microthamniales, Chlorophyta). Plant Syst Evol 164:145–159

    Article  Google Scholar 

  • Friedl T, Rokitta C (1997) Species relationships in the lichen alga Trebouxia (Chlorophyta, Trebouxiophyceae): molecular phylogenetic analyses of nuclear-encoded large subunit rRNA gene sequences. Symbiosis 23:125–148

    CAS  Google Scholar 

  • Friedl T, Zeltner C (1994) Assessing the relationships of some coccoid green lichen algae and the Microthamniales (Chlorophyta) with 18S ribosomal RNA gene sequence comparisons. J Phycol 30:500–506

    Article  CAS  Google Scholar 

  • Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins oflichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268(5216):1492–1495

    Article  PubMed  CAS  Google Scholar 

  • Gilbert OL (1977) Fungal plasticity in Cladonia pocillum. Lichenologist 9:172–173

    Google Scholar 

  • Goffinet B, Bayer RJ (1997) Characterization of mycobionts of photomorph pairs in the Peltigeraceae (lichenized Ascomycetes) based on internal transcribed spacer sequences of the nucler ribosomal DNA. Fungal Genet Biol 21:228–237

    Article  PubMed  CAS  Google Scholar 

  • Good L, Intine RVA, Nazar RN (1997) Interdependence in the processing of ribosomal RNAs in Schizosaccharomyces pombe. J Mol Biol 273:782–788

    Article  PubMed  CAS  Google Scholar 

  • Grube M, DePriest PT, Gargas A, Hafellner J (1995) DNA isolation from lichen ascomata. Mycol Res 99:1321–1324

    Article  CAS  Google Scholar 

  • Hausner G, Wang X (2005) Unusual compact rDNA gene arrangements within some members of the Ascomycota: evidence for molecular co-evolution between ITS1 and ITS2. Genome 48:1–13

    Article  Google Scholar 

  • Hawksworth DL (1973) Ecological factors and species delimitation in the lichens. In: Heywood VH (ed) Taxonomy and ecology. Academic Press, New York, pp 31–70

    Google Scholar 

  • Helms G, Friedl T, Rambold G, Mayrhofer H (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33:73–86

    Article  Google Scholar 

  • Hildreth KC, Ahmadjian V (1981) A study of Trebouxia and Pseudotrebouxia isolates from different lichens. Lichenologist 13:65–86

    Google Scholar 

  • Honegger R (1996) Mycobionts. In: Nash TH III, (ed) Lichen biology. Cambridge University Press, New York, pp 24–36

    Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34:611–612

    Article  Google Scholar 

  • Joseph N, Krauskoph E, Vera MI, Michot B (1999) Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. Nucleic Acids Res 27:4533–4540

    Article  PubMed  CAS  Google Scholar 

  • Kishino H, Hasagawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  PubMed  CAS  Google Scholar 

  • Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103:645–660

    Article  CAS  Google Scholar 

  • Lalev AI, Nazar RN (1998) Conserved core structure in the internal transcribed spacer 1 of the Schizosaccharomyces pombe precursor ribosomal RNA. J Mol Biol 284:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Lalev AI, Abeyrathne PD, Nazar RN (2000) Ribosomal RNA maturation in Schizosaccharomyces pombe is dependent on a large ribonucleoprotein complex of the internal transcribed spacer 1. J Mol Biol 302:65–77

    Article  PubMed  CAS  Google Scholar 

  • Laundon JR (1995) On the classification of lichen photomorphs. Taxon 44:387–389

    Article  Google Scholar 

  • Lott TJ, Burns BM, Zancope-Oliveira R, Elie CM, Reiss E (1998) Sequence analysis of the Internal Transcribed Spacer 2 (ITS2) from yeast species within the genus Candida. Curr Microbiol 36:63–69

    Article  PubMed  CAS  Google Scholar 

  • Lutzoni FM (1997) Phylogeny of lichen- and non-lichen-forming omphalinoid mushrooms and the utility of testing for combinability among multiple data sets. Syst Biol 46:373–406

    Article  PubMed  CAS  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  PubMed  CAS  Google Scholar 

  • Mai JC, Coleman AW (1997) The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J Mol Evol 44:258–271

    Article  PubMed  CAS  Google Scholar 

  • Mai JC, Myllys L, Lohtander K, Tehler A (2001) Beta-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia 93:335–343

    Article  Google Scholar 

  • Ohmura Y, Kawachi M, Kasai F, Watanabe MM (2006) Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109:43–59

    Article  CAS  Google Scholar 

  • Ott S (1987) Sexual reproduction and developmental adaptations in Xanthoria parietina. Nordic J Bot 7:219–228

    Article  Google Scholar 

  • Ott S, Meier T, Jahns HM (1995) Development, regeneration, and parasitic interactions between the lichens Fulgensia bracteata and Toninia caeruleonigricans. Can J Bot 73 (Suppl 1):S595–S602

    Google Scholar 

  • Paterson AM, Gray RD (1997) Host-parasite co-speciation, host switching, and missing the boat. In: Clayton DH, Moore J (eds) Host-parasite evolution. Oxford University Press, New York, pp 236–250

    Google Scholar 

  • Piercey-Normore MD (2004) Selection of algal partners by lichen fungi and patterns of variation for three species of Cladonia. Can J Bot 82:947–961

    Article  CAS  Google Scholar 

  • Piercey-Normore MD (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol 169:331–344

    Article  PubMed  CAS  Google Scholar 

  • Piercey-Normore MD, DePriest PT (2001) Algal switching among lichen symbioses. Am J Bot 88:1490–1498

    Article  CAS  Google Scholar 

  • Piercey-Normore MD, Coxson D, Goward T, Goffinet B. (2006) Phylogenetic position of a Pacific Northwest North American endemic cyanolichen, Nephroma occultum (Ascomycota, Peltigerales). Lichenologist 38:441–456

    Article  Google Scholar 

  • Pintado A, Valladares F, Sancho LG (1997) Exploring phenotypic plasticity in the lichen Ramalina capitata: morphology, water relations, and chlorophyll content in north- and south-facing populations. Ann Bot 80:345–353

    Article  Google Scholar 

  • Purvis OW (1997) The species concept in lichens. In: Claridge MF, Dawah HA, Wilson MR (ed) Species: the units of biodiversity. The systematics association special volume series 54. Chapman and Hall, London, pp 109–134

    Google Scholar 

  • Rambaut A (2001) Se-Al (sequence alignment editor version 1). Department of Zoology, University of Oxford, Oxford, UK

    Google Scholar 

  • Rikkinen J (1997) Habitat shifts and morphological variation of Pseudevernia furfuracea along a topographical gradient. Symb Bot Ups 32:223–245

    Google Scholar 

  • Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357

    Article  PubMed  CAS  Google Scholar 

  • Sojo F, Valladares F, Sancho LG (1997) Structural and physiological plasticity of the lichen Catillaria corymbosa in different microhabitats of the maritime Antarctica. Bryologist 100:171–179

    Google Scholar 

  • Stenroos S, Hyvonen J, Myllys L, Thell A, Ahti T (2002) Phylogeny of the genus Cladonia s. lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics 18:237–278

    Article  Google Scholar 

  • Stenroos S, Stocker-Wörgötter E, Yoshimura I, Myllys L, Thell A, Hyvönen J (2003) Culture experiments and DNA sequence data confirm the identity of Lobaria photomorphs. Can J Bot 81:232–247

    Article  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  • Thomson JW (1967) The lichen genus Cladonia in North America. University of Toronto Press, Toronto

    Google Scholar 

  • Thomson JW (1984) American Arctic lichens. 1. The macrolichens. Columbia University Press, New York

    Google Scholar 

  • Torres RA, Ganal M, Hamleben V (1990) GC balance in the internal transcribed spacers ITS1 and ITS2 of nuclear ribosomal RNA genes. J Mol Evol 30:170–181

    Article  PubMed  CAS  Google Scholar 

  • Wedin M, Doring H, Gilenstam G (2004) Saprotrophy and lichenization as options for the same fungal species on different substrata: environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol 164:459–465

    Article  Google Scholar 

  • White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Yahr R, Vilgalys R, DePriest PT (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol Ecol 13:3367–3378

    Article  PubMed  CAS  Google Scholar 

  • Zoller S, Lutzoni F (2003) slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Mol Phylogenet Evol 29:629–640

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank G. Hausner (University of Manitoba) for review of a previous version of the manuscript; G. Robinson (University of Manitoba) for insightful discussions on algal biology; H. Hernandez (Manitoba Conservation) for kind provision of collection permit 17613; and B. Reside, C. Elliot, and M. Manseau (Parks Canada) for financial and technical support and provision of collection permit 2002–04. Part of the study was a M.Sc. project of S.B. The study was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) grant to M.P-N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele D. Piercey-Normore.

Additional information

[Reviewing Editor: Dr. Debashish Bhattacharya]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beiggi, S., Piercey-Normore, M.D. Evolution of ITS Ribosomal RNA Secondary Structures in Fungal and Algal Symbionts of Selected Species of Cladonia sect. Cladonia (Cladoniaceae, Ascomycotina). J Mol Evol 64, 528–542 (2007). https://doi.org/10.1007/s00239-006-0115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0115-x

Keywords

Navigation