Skip to main content
Log in

The Mitochondrial Genome of Xiphinema americanum sensu stricto (Nematoda: Enoplea): Considerable Economization in the Length and Structural Features of Encoded Genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The complete sequence of the mitochondrial genome of the plant parasitic nematode Xiphinema americanum sensu stricto has been determined. At 12626bp it is the smallest metazoan mitochondrial genome reported to date. Genes are transcribed from both strands. Genes coding for 12 proteins, 2 rRNAs and 17 putative tRNAs (with the tRNA-C, I, N, S1, S2 missing) are predicted from the sequence. The arrangement of genes within the X. americanum mitochondrial genome is unique and includes gene overlaps. Comparisons with the mtDNA of other nematodes show that the small size of the X. americanum mtDNA is due to a combination of factors. The two mitochondrial rRNA genes are considerably smaller than those of other nematodes, with most of the protein encoding and tRNA genes also slightly smaller. In addition, five tRNAs genes are absent, lengthy noncoding regions are not present in the mtDNA, and several gene overlaps are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Fig. 5
Fig. 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Armstrong MR, Blok VC, Phillips MS (2000) A multipartitie mitochondrial genome in the potato cyst nematode Globodera pallida. Genetics 154:181–192

    PubMed  CAS  Google Scholar 

  • Beagley CT, Macfarlane GA, Pont–Kingdon, Okimo R, Okada N, Wolstenholme DR (1995) Mitochodrial genome of Anthozoa (Cnidaria). In: Palmieri F (ed). Progr Cell Res 5:149–153

    CAS  Google Scholar 

  • Beagley CT, Okada N, Wolstenholme DR (1996) Two mitochondrial group I introns in a metazoan, the sea anemone Metridium senile: One intron contains genes for subunits 1 and 3 of NADH dehydrogenase. Proc Natl Acad Sci USA 93:5619–5623

    Article  PubMed  CAS  Google Scholar 

  • Beagley CT, Okimo R, Wolstenholme DR (1998) The mitochondrial genome of sea anemone Metridium senile (Cnidaria): introns, a paucity of tRNA, genes and a near-standard genetic code. Genetics 148:1091–1109

    PubMed  CAS  Google Scholar 

  • Beaton MJ, Roger AJ, Cavalier-Smith T (1998) Sequence analysis of the mitochondrial genome of Sarcophyton glaucum: conserved gene order among octocorals. J Mol Evol 47:697–708

    PubMed  CAS  Google Scholar 

  • Blaxter ML, De ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392(5):71–75

    PubMed  CAS  Google Scholar 

  • Blanchette M, Kunisawa T, Sankoff D (1999) Gene order breakpoint evidence in animal mitochondrial phylogeny. J Mol Evol 49:193–203

    PubMed  CAS  Google Scholar 

  • Boore JL (1999) Survey and summary: Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  PubMed  CAS  Google Scholar 

  • Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8:668–674

    Article  PubMed  CAS  Google Scholar 

  • Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376:163–165

    Article  PubMed  CAS  Google Scholar 

  • Boore JL, Lavrov D, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 393:667–668

    Google Scholar 

  • Bridge D, Cunningham CW, Schierwater B, Desalle R, Buss LW (1992) Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc Natl Acad Sci USA 89:8750–8753

    PubMed  CAS  Google Scholar 

  • Cheng S, Stoneking M (1996) Complete mitochondrial genome amplification. Nat Genet 7:350–351

    Google Scholar 

  • De Rijk P, De Wachter R (1997) RNAviz, a program for the visualization of RNA secondary structure. Nucleic Acids Res 25:4679–4684

    PubMed  Google Scholar 

  • Döner M, Altmann M, Pääbo S, Mörl M (2001) Evidence for import of a lysyl-tRNA into marsupial mitochondria. Mol Biol Cell 12:2688–2698

    Google Scholar 

  • Gutell RR (1994) Collection of small subunit (16S- and 16S-like) ribosomal RNA structures. Nucleic Acids Res 22:3505–3507

    Google Scholar 

  • Gutell RR (1995) Comparative sequence analysis and the structure of 16S and 23S rRNA. In: Zimmermann RA, Dahlberg AE (eds) Ribosomal RNA. Structure, evolution, processing and function in protein biosynthesis. CRC Press, New York, pp 111–128

    Google Scholar 

  • Gutell RR, Gray MW, Schnare MN (1993) A compilation of large subunit (23S- and 23S-like) ribosomal RNA structures. Nucleic Acids Res 21:3055–3074

    PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hixton JE, Wong TW, Clayton DA (1986) Both the conserved stem-loop and divergent 5′-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication. J Biol Chem 261:2384–2390

    Google Scholar 

  • Hoffmann RJ, Boore JL, Brown WM (1992) A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics 131:397–412

    PubMed  CAS  Google Scholar 

  • Hu M, Chilton NG, Gasser RB (2002) The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea). Int J Parasitol 32:145–158

    PubMed  CAS  Google Scholar 

  • Hu M, Chilton NB, Gasser RB (2004) The mitochondrial genomics of parasitic nematodes of socio-economic importance: recent progress, and implications for population genetics and systematics. Adv Paratitol 56:133–212

    Google Scholar 

  • Hyman BC, Azevedo JLB (1996) Similar evolutionary patterning among repeated and single copy nematode mitochondrial genes. Mol Biol Evol 13:221–232

    PubMed  CAS  Google Scholar 

  • Keddie EM, Higazi T, Unnasch TR (1998) The mitochondrial genome of Onchocerca volvulus: sequences, structure and phylogenetic analysis. Mol Biochem Parasitol 95:111–127

    Article  PubMed  CAS  Google Scholar 

  • Khaitovich P, Mankin AS (1999) Effects of antibiotics on large ribosomal subunit assembly reveals possible function of 5 S rRNA. J Mol Biol 291:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydrophobic character of a protein. J Mol Biol 157:105–142

    Article  PubMed  CAS  Google Scholar 

  • L’Abbé D, Duhaime DJ, Lang BF, Morais R (1991) The transcription of DNA in chicken mitochondria initiates from one major bi-directional promoter. J Biol Chem 266:10844–10850

    PubMed  Google Scholar 

  • Lavrov DV, Brown WM (2001) Trichinella spiralis mtDNA: A nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAs and has a gene arrangement relatable to those of coelamate metazoans. Genetics 157:621–637

    PubMed  CAS  Google Scholar 

  • Lavrov DV, Brown WM, Boore JL (2000) A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Pro Natl Acad Sci USA 97:13738–13742

    CAS  Google Scholar 

  • Le TH, Blair D, Agatsuma, T et al. (2000) Phylogenies inferred from mitochondrial gene orders: a cautionary tale from the parasitic flatworms. Mol Biol Evol 17(7):1123–1125

    PubMed  CAS  Google Scholar 

  • Lewis DL, Farr CL, Farquhar AL, Kaguni LS (1994) Sequence, organization, and evolution of the A+T region of Drosophila melanoganster mitochondrial DNA. Mol Biol Evol 11:523–38

    PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  CAS  Google Scholar 

  • Mörl M, Dörner M, Pääbo S (1995) C to U editing and modifications during the maturation of the mitochondrial tRNA(Asp) in marsupials. Nucleic Acids Res 23:3380–3384

    PubMed  Google Scholar 

  • Ohtsuki T, Watanabe Y, Takemoto C, Kawai G, Ueda T, Kita K, Kojima S, Kaziro Y, Nyborg J, Watanabe K (2001) An “elongated” translation elongation factor Tu for truncated tRNAs in nematode mitochondria. J Biol Chem 276:21571–21577

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki T, Sakurai M, Sato A, Watanabe K (2002) Characterization of the interaction between the nucleotide exchange factor EU-Ts from nematode mitochondria and elongation factor Tu. Nucleic Acids Res 30(24):5444–5451

    Article  PubMed  CAS  Google Scholar 

  • Ojala DC, Merkel C, Gelfand R, Attardi G (1980) The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell 22:393–403

    Article  PubMed  CAS  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  PubMed  CAS  Google Scholar 

  • Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130:471–498

    PubMed  CAS  Google Scholar 

  • Orr AT, Rabets JC, Horton TL, Landweber LF (1997) RNA editing missing in mitochondria. RNA 3:335–336

    PubMed  CAS  Google Scholar 

  • Pont-Kingdon GA, Okada N, Macfarlane JL, Beagley CT, Watkins-Sims CD, Cavlier-Smith T, Clark-Walker GD, Wolstenholme DR (1998) Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homolog of bacterial MutS: a possible case of gene transfer from the nucleus to the mitochondrion. J Mol Evol 46:419–431

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Smith MJ, Amdt A, Gotsky S, Fajber E (1993) The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J Mol Evol 36:545–554

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, Watanabe K (2001) Proteomic analysis of the mammalian mitochondrial ribosome. J Biol Chem 276:33181–33195

    PubMed  CAS  Google Scholar 

  • Taanman JW (1999) Review: The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123

    PubMed  CAS  Google Scholar 

  • Tan THP, Bochud-Allemann N, Horn EK, Schneider A (2002) Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc Natl Acad Sci USA 99:1152–1157

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Google Scholar 

  • Tomita K, Ueda T, Watanabe K (1996) RNA editing in the acceptor stem of squid mitochondrial tRNATyr. Nucleic Acids Res 24:4987–4991

    Article  PubMed  CAS  Google Scholar 

  • Watanabe KI, Bessho Y, Kawasaki M, Hori H (1999) Mitochondrial genes are found on minicircle DNA molecules in the mesazoan animal Dicyema. J Mol Biol 286:645–650

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Tsurui H, Ueda T, Furushima R, Takamiya S, Kita K, Nishikawa K, Watanabe K (1994) Primary and higher order structure of nematode (Ascaris suum) mitochondrial tRNAs lacking either the T or D stem. J Biol Chem 269:22902–22906

    PubMed  CAS  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    PubMed  CAS  Google Scholar 

  • Wolstenholme DR, Okimoto R, Macfarlane JL (1994) Nucleotide correlation that suggest tertiary interactions in the TV-replacement loop-containing mitochondrial tRNAs of the nematodes, Caenorhabditis elegans and Ascaris suum. Nucleic Acids Res 22:4300–4306

    PubMed  CAS  Google Scholar 

  • Yokobori S, Pääbo S (1995a) tRNA editing in metazoans. Nature 377:490

    Article  CAS  Google Scholar 

  • Yokobori S, Pääbo S (1995b) Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci USA 92:10432–10435

    CAS  Google Scholar 

  • Zuker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In: Barciszewski J, Clark BFC (eds) RNA biochemistry and biotechnology. NATO ASI Series. Kluwer Academic, New York, pp 11–43

    Google Scholar 

Download references

Acknowledgments

This work was funded by EU Contract SMT4-CT98-2229 and Scottish Executive Environment and Rural Affairs Department Project SCR/561/00 (J.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moens.

Additional information

[Reviewing Editor: Dr. Yues van de Peer]

F. Lamberti: Deceased, 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Jones, J., Armstrong, M. et al. The Mitochondrial Genome of Xiphinema americanum sensu stricto (Nematoda: Enoplea): Considerable Economization in the Length and Structural Features of Encoded Genes. J Mol Evol 61, 819–833 (2005). https://doi.org/10.1007/s00239-005-0102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0102-7

Keywords

Navigation