Skip to main content
Log in

Tempo and Mode of Spliceosomal Intron Evolution in Actin of Foraminifera

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Spliceosomal introns are present in almost all eukaryotic genes, yet little is known about their origin and turnover in the majority of eukaryotic phyla. There is no agreement whether most introns are ancestral and have been lost in some lineage or have been gained recently. We addressed this question by analyzing the spatial and temporal distribution of introns in actins of foraminifera, a group of testate protists whose exceptionally rich fossil record permits the calibration of molecular phylogenies to date intron origins. We identified 24 introns dispersed along the sequence of two foraminiferan actin paralogues and actin deviating proteins, an unconventional type of fast-evolving actin found in some foraminifera. Comparison of intron positions indicates that 20 of 24 introns are specific to foraminifera. Four introns shared between foraminifera and other eukaryotes were interpreted as parallel gains because they have been found only in single species belonging to phylogenetically distinctive lineages. Moreover, additional recent intron gain due to the transfer between the actin paralogues was observed in two cultured species. Based on a relaxed molecular clock timescale, we conclude that intron gains in actin took place throughout the evolution of foraminifera, with the oldest introns inserted between 550 and 500 million years ago and the youngest ones acquired less than 100 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACT1:

actin type 1

ACT2:

actin type 2

ADP:

actin deviating protein

ARP:

actin-related protein

BS:

bootstrap support

ML:

maximum likelihood

Mya:

million years ago

NAP:

novel actin-like protein

SSU:

small subunit rRNA

SD:

standard-deviation of Bayesian relaxed molecular clock method.

References

  • Babenko VN, Rogozin IB, Mekhedov SL, Koonin EV (2004) Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Res 32:3724–3733

    Article  PubMed  CAS  Google Scholar 

  • Bagavathi S, Malathi R (1996) Introns and protein revolution—an analysis of the exon/intron organisation of actin genes. FEBS Lett 392:63–65

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL, Bhattacharya D, Cockrill J, Hugenholtz P, Pawlowski J, Simpson AGB (2004) The tree of life, an overview. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press. Oxford, pp 43–75

    Google Scholar 

  • Bhattacharya D, Weber K (1997) The actin gene of the glaucocystophyte Cyanophora paradoxa: analysis of the coding region and introns and an actin phylogeny of eukaryotes. Curr Genet 31:439–446

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Lutzoni F, Reb V, Simon D, Nason J, Fernandez F (2000) Widespread occurrence of spliceosomal introns in the rDNA genes of Ascomycetes. Mol Biol Evol 17:1971–1984

    PubMed  CAS  Google Scholar 

  • Brady SG, Danforth BN (2004) Recent intron gain in elongation factor-1a of colletid bees (Hymenoptera: Colletidae). Mol Biol Evol 21:691–696

    Article  PubMed  CAS  Google Scholar 

  • Carlini DB, Reece KS, Graves JE (2000) Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Mol Biol Evol 17:1353–1370

    PubMed  CAS  Google Scholar 

  • Castillo-Davis CI, Bedford TBC, Hartl DL (2004) Accelerated rates on itron gain/loss and protein evolution in duplicate genes in human and mouse malaria parasites. Mol Biol Evol 21:1422–1427

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1991) Intron phylogeny: a new hypothesis. Trends Genet 7:145–148

    Article  PubMed  CAS  Google Scholar 

  • Chao KM, Pearson WR, Miller W (1992) Aligning two sequences within a specified diagonal band. Comput Appl Biosci 8:481–487

    PubMed  CAS  Google Scholar 

  • Cho G, Doolittle RF (1997) Intron distribution in ancient paralogues supports random insertion and not random loss. J Mol Evol 44:573–584

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Jin S-W, Cohen A, Ellis RE (2004) A phylogeny of Caenorhabditis reveals frequent loss of introns during nematode evolution. Genome Res 14:1207–1220

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Combet C, Jambon M, Deleage G, Geourjon C (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18:213–214

    Article  PubMed  CAS  Google Scholar 

  • Conant GC, Wagner A (2003) Asymmetric sequence divergence of duplicate genes. Genome Res 13:2052–2058

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Culver SJ (1993) Foraminifera. In: Lipps J (ed) Fossil prokaryotes and protists. Blackwell Scientific, Boston, pp 203–247

    Google Scholar 

  • Dibb NJ, Newman AJ (1989) Evidence that introns arose at proto-splice sites. EMBO J 8:2015–2021

    PubMed  CAS  Google Scholar 

  • Doolittle WF (1978) Genes in pieces: Were they ever together? Nature 272:581

    Article  Google Scholar 

  • Fahrni JF, Bolivar I, Berney C, Nassonova E, Smirnov A, Pawlowski J (2003) Phylogeny of lobose amoebae based on actin and small-subunit ribosomal RNA genes. Mol Biol Evol 20:1881–1886

    Article  PubMed  CAS  Google Scholar 

  • Fast NM, Doolittle WF (1999) Trichomonas vaginalis possesses a gene encoding the essential spliceosomal component, PRP8. Mol Biochem Parasitol 99:275

    Article  PubMed  CAS  Google Scholar 

  • Fedorov A, Merican AF, Gilbert W (2002) Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc Natl Acad Sci USA 99:16128–16133

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2004) PHYLIP (Phylogeny Inference Package). Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Flakowski J, Bolivar I, Fahrni J, Pawlowski J (2005) Actin phylogeny of foraminifera. J Foraminiferal Res 35:93–102

    Article  Google Scholar 

  • Funke RP, Kovar JL, Logsdon JM, Corrette-Bennett JC, Strauss DR, Weeks DP (1999) Nucleus-encoded, plastid-targeted acetolactate synthase genes in two closely related chlorophytes, Chlamydomonas reinhardtii and Volvox carteri: phylogenetic origins and recent insertion of introns. Mol Gen Genet 262:12–21

    Article  PubMed  CAS  Google Scholar 

  • Gattiker A, Gasteiger E, Bairoch A (2002) ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinform 1:107–108

    CAS  Google Scholar 

  • Gilbert W, de Souza SJ, Long M (1997) Origin of Genes. Proc Natl Acad Sci USA 94:7698–7703

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W, Marchionni M, McKnight G (1986) On the antiquity of introns. Cell 46:151–153

    Article  PubMed  CAS  Google Scholar 

  • Goldman N, Thorne JL, Jones DT (1998) Assessing the impact of secondary structure and solvent accessibility on protein evolution. Genetics 149:445–458

    PubMed  CAS  Google Scholar 

  • Goodson HV, Hawse WF (2002) Molecular evolution of the actin family. J Cell Sci 115:2619–2622

    PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Haynes JR (1981) Foraminifera. Macmillan, London

    Google Scholar 

  • Huang X, Miller W (1991) A time-efficient, linear-space local similarity algorithm. Adv Appl Math 12:337–357

    Article  Google Scholar 

  • Jordan IK, Wolf YI, Koonin EV (2004) Duplicated genes evolve slower than singletons despite the initial rate increase. BMC Evol Biol 4:22

    Article  PubMed  CAS  Google Scholar 

  • Kato-Minoura T, Okumura M, Hirono M, Kamiya R (2003) A novel family of unconventional actins in volvocalean algae J Mol Evol 57:555–561

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2001) Foraminifera and Cercozoa are related in actin phylogeny: Two orphans find a home? Mol Biol Evol 18:1551–1557

    PubMed  CAS  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29:170–179

    Article  PubMed  CAS  Google Scholar 

  • Kishino H, Thorne JL, Bruno WJ (2001) Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol 18:352–361

    PubMed  CAS  Google Scholar 

  • Loeblich AR, Tappan H (1988) Foraminiferan genera and their classification. Van Nostrand Reinhold, New York

    Google Scholar 

  • Longet D, Burki F, Flakowski J, Berney C, Polet S, Fahrni J, Pawlowski J (2004) Multigene evidence for close evolutionary relations between Gromia and Foraminifera. Acta Protozool 43:303–311

    CAS  Google Scholar 

  • Maddison WP, Maddison DR (2004) Mesquite: a modular system for evolutionary analysis. Software http://www.mesquiteproject.org.mesquite

  • McGuigan K, Phillips PC, Postlethwait JH (2004) Evolutiion of sarcomeric myosin heavy chain genes: evidence from fish. Mol Biol Evol 21:1042–1056

    Article  PubMed  CAS  Google Scholar 

  • Moniz de Sa M, Drouin G (1996) Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol 13:1198–1212

    PubMed  CAS  Google Scholar 

  • Nikolaev SI, Berney C, Fahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J (2004) From the Cover: The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci USA 101:8066–8071

    Article  PubMed  CAS  Google Scholar 

  • Nixon JEJ, Wang A, Morrison HG, McArthur AG, Sogin ML, Loftus BJ, Samuelson J (2002) From the Cover: A spliceosomal intron in Giardia lamblia. Proc Natl Acad Sci USA 99:3701–3705

    Article  PubMed  CAS  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  PubMed  CAS  Google Scholar 

  • Palmer J, Logsdon JM Jr (1991) The recent origins of introns. Curr Opin Genet Dev 1:470–477

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski J, Bolivar I, Fahrni JF, de Vargas C, Bowser SS (1999) Molecular evidence that Reticulomyxa filosa is a freshwater naked foraminifer. J Eukaryot Microbiol 46:612–617

    PubMed  CAS  Google Scholar 

  • Pawlowski J, Holzmann M, Berney C, Fahrni JF, Cedhagen T, Bowser SS (2002) Phylogeny of allogromiid Foraminifera inferred from SSU rRNA gene sequences. J Foraminiferal Res 32:334–343

    Article  Google Scholar 

  • Pawlowski J, Holzmann M, Berney C, Fahrni JF, Gooday AJ, Cedhagen T, Habura A, Bowser SS (2003) The evolution of early Foraminifera. Proc Natl Acad Sci USA 100:11494–11498

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR (2003) Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 132:185–219

    Google Scholar 

  • Philippe H, Adoutte A (1998) The molecular phylogeny of eukaryota: solid facts and uncertainties. In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among protozoa. Kluwer Academic, Dordrecht, the Netherlands, pp 25–36

    Google Scholar 

  • Qiu W-G, Schisler N, Stoltzfus A (2004) The evolutionary gain of spliceosomal introns: sequence and phase preferences. Mol Biol Evol 21:1252–1263

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA 100:14537–14542

    Article  PubMed  CAS  Google Scholar 

  • Robinson-Rechavi M, Huchon D (2000) RRTree: Relative-rate tests between groups of sequences on a phylogenetic tree. Bioinformatics 16:296–297

    Article  PubMed  CAS  Google Scholar 

  • Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV (2003) Remarkable interkingdom conservatiion of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 13:1512–1517

    Article  PubMed  CAS  Google Scholar 

  • Ross C, Ross J (1991) Paleozoic Foraminifera. BioSystems 25:39–51

    Article  PubMed  CAS  Google Scholar 

  • Roy SW, Gilbert W (2005a) Complex early genes. Proc Natl Acad Sci USA 102:1986–1991

    Article  CAS  Google Scholar 

  • Roy SW, Gilbert W (2005b) Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci USA 102:5773–5778

    Article  CAS  Google Scholar 

  • Roy SW, Fedorov A, Gilbert W (2003) Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proc Natl Acad Sci USA 100:7158–7162

    Article  PubMed  CAS  Google Scholar 

  • Sadusky T, Newman AJ, Dibb NJ (2004) Exon junction sequences as cryptic splice sites: implications for intron origin. Curr Biol 14:505–509

    PubMed  CAS  Google Scholar 

  • Schluter D, Price T, Mooers AO, Ludwig D (1997) Likelihood of ancestor states in adaptive radiation. Evolution 51:1699–1711

    Article  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Sheterline P, Clayton J, Sparrow JC (1999) Protein profile. Actin. Oxford University Press, New York

    Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    CAS  Google Scholar 

  • Strimmer K, Rambaut A (2002) Inferring confidence sets of possibly misspecified gene trees. Proc R Soc Lond B Biol Sci 269:137–142

    Article  Google Scholar 

  • Sverdlove AV, Rogozin IB, Babenko VN, Koonin EV (2003) Reconstruction of ancestral protosplice sites. Curr Biol 14:1505–1508

    Article  CAS  Google Scholar 

  • Tarrio R, Rodriguez-Trelles F, Ayala FJ (2003) A new Drosophila spliceosomal intron position is common in plants. Proc Natl Acad Sci USA 100:6580–6583

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Thorne JL, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 51:689–702

    Article  PubMed  Google Scholar 

  • Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657

    PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126:783–802

    Article  PubMed  CAS  Google Scholar 

  • Wang C-S, Typas MA, Butt TM (2005) Phylogenetic and exon-intron structure analysis of fungal subtilisins: support for a mixed model of intron evolution. J Mol Evol 60:238–246

    Article  PubMed  CAS  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Elisabeth Alve, Sam Bowser, Colomban de Vargas, Evelyne Goubert, Maria Holzmann, Valérie Le Cadre, David Longet, Xavier Pochon, Stephane Polet, Magali Schweizer, and Tom Wilding for their help in collecting the foraminifera. We are grateful to Juan Montoya and Sam Bowser for providing constructive remarks on the manuscript. This research was supported by Swiss National Science Foundation Grant 3100A0-100415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Pawlowski.

Additional information

[Reviewing Editor: Dr. Debashish Bhattacharya]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flakowski, J., Bolivar, I., Fahrni, J. et al. Tempo and Mode of Spliceosomal Intron Evolution in Actin of Foraminifera. J Mol Evol 63, 30–41 (2006). https://doi.org/10.1007/s00239-005-0061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0061-z

Keywords

Navigation