Journal of Molecular Evolution

, Volume 63, Issue 1, pp 1–11 | Cite as

Accelerated Evolutionary Rate May Be Responsible for the Emergence of Lineage-Specific Genes in Ascomycota

  • James J. Cai
  • Patrick C.Y. Woo
  • Susanna K.P. Lau
  • David K. Smith
  • Kwok-yung Yuen


The evolutionary origin of “orphan” genes, genes that lack sequence similarity to any known gene, remains a mystery. One suggestion has been that most orphan genes evolve rapidly so that similarity to other genes cannot be traced after a certain evolutionary distance. This can be tested by examining the divergence rates of genes with different degrees of lineage specificity. Here the lineage specificity (LS) of a gene describes the phylogenetic distribution of that gene’s orthologues in related species. Highly lineage-specific genes will be distributed in fewer species in a phylogeny. In this study, we have used the complete genomes of seven ascomycotan fungi and two animals to define several levels of LS, such as Eukaryotes-core, Ascomycota-core, Euascomycetes-specific, Hemiascomycetes-specific, Aspergillus-specific, and Saccharomyces-specific. We compare the rates of gene evolution in groups of higher LS to those in groups with lower LS. Molecular evolutionary analyses indicate an increase in nonsynonymous nucleotide substitution rates in genes with higher LS. Several analyses suggest that LS is correlated with the evolutionary rate of the gene. This correlation is stronger than those of a number of other factors that have been proposed as predictors of a gene’s evolutionary rate, including the expression level of genes, gene essentiality or dispensability, and the number of protein-protein interactions. The accelerated evolutionary rates of genes with higher LS may reflect the influence of selection and adaptive divergence during the emergence of orphan genes. These analyses suggest that accelerated rates of gene evolution may be responsible for the emergence of apparently orphan genes.


Lineage specificity Evolutionary rate Ascomycota 

Supplementary material

supp.pdf (610 kb)
Supplementary material


  1. Adams MD, Celniker SE, Holt RA, et al. (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195PubMedCrossRefGoogle Scholar
  2. Alba MM, Castresana J (2005) Inverse relationship between evolutionary rate and age of mammalian genes. Mol Biol Evol 22:598–606PubMedCrossRefGoogle Scholar
  3. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  4. Aravind L, Watanabe H, Lipman DJ, Koonin EV (2000) Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc Natl Acad Sci USA 97:11319–11324PubMedCrossRefGoogle Scholar
  5. Breitkreutz BJ, Stark C, Tyers M (2003) The GRID: the General Repository for Interaction Datasets. Genome Biol 4:R23PubMedCrossRefGoogle Scholar
  6. C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018CrossRefGoogle Scholar
  7. Cai JJ, Smith DK, Xia X, Yuen KY (2005) MBEToolbox: a Matlab toolbox for sequence data analysis in molecular biology and evolution. BMC Bioinform 6:64CrossRefGoogle Scholar
  8. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65–73PubMedCrossRefGoogle Scholar
  9. Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76PubMedCrossRefGoogle Scholar
  10. Collins LJ, Poole AM, Penny D (2003) Using ancestral sequences to uncover potential gene homologueues. Appl Bioinform 2:S85–S95Google Scholar
  11. Daubin V, Ochman H (2004) Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res 14:1036–1042PubMedCrossRefGoogle Scholar
  12. d’Enfert C, Goyard S, Rodriguez-Arnaveilhe S, Frangeul L, Jones L, Tekaia F, Bader O, Albrecht A, Castillo L, Dominguez A, Ernst JF, Fradin C, Gaillardin C, Garcia-Sanchez S, de Groot P, Hube B, Klis FM, Krishnamurthy S, Kunze D, Lopez MC, Mavor A, Martin N, Moszer I, Onesime D, Perez Martin J, Sentandreu R, Valentin E, Brown AJ (2005) CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Res 33:D353–D357PubMedCrossRefGoogle Scholar
  13. Domazet-Loso T, Tautz D (2003) An evolutionary analysis of orphan genes in Drosophila. Genome Res 13:2213–2219PubMedCrossRefGoogle Scholar
  14. Draper NR, Smith H (1998) Applied regression analysis. Wiley, New YorkGoogle Scholar
  15. Elhaik E, Sabath N, Graur D (2006) The “inverse relationship between evolutionary rate and age of Mammalian genes” is an artifact of increased genetic distance with rate of evolution and time of divergence. Mol Biol Evol 23:1–3PubMedCrossRefGoogle Scholar
  16. Fischer D, Eisenberg D (1999) Finding families for genomic ORFans. Bioinformatics 15:759–762PubMedCrossRefGoogle Scholar
  17. Fraser HB, Wall DP, Hirsh AE (2003) A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol Biol 3:11PubMedCrossRefGoogle Scholar
  18. Fungal Research Community (2002) Fungal Genome Initiative;
  19. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868PubMedCrossRefGoogle Scholar
  20. Gavin AC, Bosche M, Krause R, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147PubMedCrossRefGoogle Scholar
  21. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546, 563–567PubMedCrossRefGoogle Scholar
  22. Graur D (1985) Amino acid composition and the evolutionary rates of protein-coding genes. J Mol Evol 22:53–62PubMedCrossRefGoogle Scholar
  23. Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66PubMedCrossRefGoogle Scholar
  24. Hastings KE (1996) Strong evolutionary conservation of broadly expressed protein isoforms in the troponin I gene family and other vertebrate gene families. J Mol Evol 42:631–640PubMedCrossRefGoogle Scholar
  25. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133PubMedCrossRefGoogle Scholar
  26. Hedges SB, Kumar S (2003) Genomic clocks and evolutionary timescales. Trends Genet 19:200–206CrossRefGoogle Scholar
  27. Hirsh A, Fraser H (2001) Protein dispensability and rate of evolution. Nature 411:1046–1049PubMedCrossRefGoogle Scholar
  28. Ho Y, Gruhler A, Heilbut A, Bader G, Moore L, Adams S, Millar A, Taylor P, Bennett K, Boutilier K (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183PubMedCrossRefGoogle Scholar
  29. Hurst LD, Smith NG (1999) Do essential genes evolve slowly? Curr Biol 9:747–750PubMedCrossRefGoogle Scholar
  30. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569– 4574PubMedCrossRefGoogle Scholar
  31. Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002a) Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res 12:962–968CrossRefGoogle Scholar
  32. Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002b) Microevolutionary genomics of bacteria. Theor Popul Biol 61:435–447CrossRefGoogle Scholar
  33. Jordan IK, Wolf YI, Koonin EV (2003) No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol Biol 3:1PubMedCrossRefGoogle Scholar
  34. Kellis M, Patterson N, Endrizzi M, Birren B, Lander E (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254PubMedCrossRefGoogle Scholar
  35. Kondrashov FA, Ogurtsov AY, Kondrashov AS (2004) Bioinformatical assay of human gene morbidity. Nucleic Acids Res 32:1731–1737PubMedCrossRefGoogle Scholar
  36. Koonin E, Fedorova N, Jackson J, Jacobs A, Krylov D, Makarova K, Mazumder R, Mekhedov S, Nikolskaya A, Rao B, Rogozin I, Smirnov S, Sorokin A, Sverdlov A, Vasudevan S, Wolf Y, Yin J, Natale D (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7PubMedCrossRefGoogle Scholar
  37. Krylov DM, Wolf YI, Rogozin IB, Koonin EV (2003) Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res 13:2229–2235PubMedCrossRefGoogle Scholar
  38. Kurtzman C, Fell J (1998) The yeasts, a taxonomic study. Elsevier Science, AmsterdamGoogle Scholar
  39. Makalowski W, Boguski MS (1998) Synonymous and nonsynonymous substitution distances are correlated in mouse and rat genes. J Mol Evol 47:119–121PubMedCrossRefGoogle Scholar
  40. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402:83–86PubMedCrossRefGoogle Scholar
  41. Ohta T, (1995) Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J Mol Evol 40:56–63PubMedCrossRefGoogle Scholar
  42. Pal C, Papp B, Hurst LD (2001) Highly expressed genes in yeast evolve slowly. Genetics 158:927–931PubMedGoogle Scholar
  43. Pellegrini M, Marcotte E, Thompson M, Eisenberg D, Yeates T (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96:4285–4288PubMedCrossRefGoogle Scholar
  44. Remm M, Storm CE, Sonnhammer EL (2001) Automatic clustering of orthologues and in-paralogs from pairwise species comparisons. J Mol Biol 314:1041–1052PubMedCrossRefGoogle Scholar
  45. Rocha EP, Danchin A (2004) An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 21:108–116PubMedCrossRefGoogle Scholar
  46. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, et al. (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215PubMedCrossRefGoogle Scholar
  47. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32:D449–D451PubMedCrossRefGoogle Scholar
  48. Schmid KJ, Aquadro CF (2001) The evolutionary analysis of “orphans” from the Drosophila genome identifies rapidly diverging and incorrectly annotated genes. Genetics 159:589–598PubMedGoogle Scholar
  49. Shields R (2004) Pushing the envelope on molecular dating. Trends Genet 20:221–222PubMedCrossRefGoogle Scholar
  50. Sipiczki M (2000) Where does fission yeast sit on the tree of life? Genome Biol 1:REVIEWS1011PubMedCrossRefGoogle Scholar
  51. Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS, Jones T, Chu AM, Giaever G, Prokisch H, Oefner PJ, Davis RW (2002) Systematic screen for human disease genes in yeast. Nature Genet 31:400–404PubMedGoogle Scholar
  52. Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  53. Tong AHY, Lesage G, Bader GD, Ding H, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813PubMedCrossRefGoogle Scholar
  54. Uetz P, Giot L, Cagney G, Mansfield T, Judson R, Knight J, Lockshon D, Narayan V, Srinivasan M, Pochart P (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae Nature 403:623–627PubMedCrossRefGoogle Scholar
  55. Wagner A (2001) The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 18:1283–1292PubMedGoogle Scholar
  56. Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639PubMedCrossRefGoogle Scholar
  57. Wolfe KH, Sharp PM (1993) Mammalian gene evolution: nucleotide sequence divergence between mouse and rat. J Mol Evol 37:441–456PubMedCrossRefGoogle Scholar
  58. Wood V, Gwilliam R, Rajandream MA, et al. (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880PubMedCrossRefGoogle Scholar
  59. Yang J, Gu Z, Li WH (2003) Rate of protein evolution versus fitness effect of gene deletion. Mol Biol Evol 20:772–774PubMedCrossRefGoogle Scholar
  60. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  61. Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  62. Zhang P, Gu Z, Li WH (2003) Different evolutionary patterns between young duplicate genes in the human genome. Genome Biol 4:R56PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • James J. Cai
    • 1
  • Patrick C.Y. Woo
    • 1
  • Susanna K.P. Lau
    • 1
  • David K. Smith
    • 2
  • Kwok-yung Yuen
    • 1
  1. 1.Department of Microbiology, Faculty of MedicineUniversity of Hong KongChina
  2. 2.Department of Biochemistry, Faculty of MedicineUniversity of Hong KongChina

Personalised recommendations