Journal of Molecular Evolution

, Volume 61, Issue 1, pp 90–98 | Cite as

Evidence of Positive Darwinian Selection in Putative Meningococcal Vaccine Antigens

  • David A. Fitzpatrick
  • Christopher J. Creevey
  • James O. McInerney
Article

Abstract

Meningococcal meningitidis is a life-threatening disease. In Europe and the United States the majority of cases are caused by virulent meningococcal strains belonging to serogroup B. Presently there is no effective vaccine against serogroup B strains, as traditional vaccine antigens such as polysaccharide capsules are unusable as they lead to autoimmunity. The year 2000 saw the publication of the complete genome of Neisseria meningitidis MC58, a virulent serogroup B bacterium. Working in conjunction with the sequencing project, researchers endeavored to locate highly conserved membrane-associated proteins that elicit an immune response. It is hoped that these proteins will provide a basis for novel vaccines against serogroup B strains. A number of potential vaccine antigens have been located and are presently in phase I clinical trials. Recently many reports pertaining to the evidence of positive Darwinian selection in membrane proteins of pathogens have been reported. This study utilized in silico methods to test for evidence of historical positive Darwinian selection in seven such vaccine candidates. We found that two of these proteins show signatures of adaptive evolution, while the remaining proteins show evidence of strong purifying selection. This has significant implications for the design of a vaccine against serogroup B strains, as it has been shown that vaccines that target epitopes that are under strong purifying selection are better than those that target variable epitopes.

Keywords

Neisseria meningitidis Positive selection Vaccine design 

References

  1. Andrews, TD, Gojobori, T 2004Strong positive selection and recombination drive the antigenic variation of the PilE protein of the human pathogen Neisseria meningitidisGenetics1662532CrossRefPubMedGoogle Scholar
  2. Anisimova, M, Bielawski, JP, Yang, Z 2001Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolutionMol Biol Evol1815851592PubMedGoogle Scholar
  3. Anisimova, M, Nielsen, R, Yang, Z 2003Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sitesGenetics16412291236PubMedGoogle Scholar
  4. Berezin, C, Glaser, F, Rosenberg, J, Paz, I, Pupko, T, Fariselli, P, Casadio, R, Ben-Tal, N 2004ConSeq: the identification of functionally and structurally important residues in protein sequencesBioinformatics2013221324CrossRefPubMedGoogle Scholar
  5. Bjune, G, Hoiby, EA, Gronnesby, JK, Arnesen, O, Fredriksen, JH, Halstensen, A, Holten, E, Lindbak, AK, Nokleby, H, Rosenqvist, E 1991Effect of outer membrane vesicle vaccine against group B meningococcal disease in NorwayLancet33810931096CrossRefPubMedGoogle Scholar
  6. Bush, RM, Fitch, WM, Bender, CA, Cox, NJ 1999Positive selection on the H3 hemagglutinin gene of human influenza virus AMol Biol Evol1614571465PubMedGoogle Scholar
  7. Creevey, CJ, Mclnerney, JO 2002An algorithm for detecting directional and non-directional positive selection, neutrality and negative selection in protein coding DNA sequencesGene3004351CrossRefPubMedGoogle Scholar
  8. Oliveira, T, Salemi, M, Gordon, M, Vandamme, AM, Rensburg, EJ, Engelbrecht, S, Coovadia, HM, Cassol, S 2004Mapping sites of positive selection and amino acid diversification in the HIV genome: an alternative approach to vaccine designGenetics16710471058CrossRefPubMedGoogle Scholar
  9. Fares MA (2004) SWAPSC: sliding window analysis procedure to detect selective constraints. Bioinformatics:bth303Google Scholar
  10. Fares, MA, Moya, A, Escarmis, C, Baranowski, E, Domingo, E, Barrio, E 2001Evidence for positive selection in the capsid protein-coding region of the foot-and-mouth disease virus (FMDV) subjected to experimental passage regimensMol Biol Evol181021PubMedGoogle Scholar
  11. Frasch, CE 1989Vaccines for prevention of meningococcal diseaseClin Microbiol Rev 2 Suppl S134S138PubMedGoogle Scholar
  12. Goldschneider, I, Gotschlich, EC, Artenstein, MS 1969Human immunity to the meningococcus. I. The role of humoral antibodies J Exp Med12913071326CrossRefPubMedGoogle Scholar
  13. Gotschlich, EC, Liu, TY, Artenstein, MS 1969Human immunity to the meningococcus. 3. Preparation and immunochemical properties of the group A, group B, and group C meningococcal polysaccharides J Exp Med12913491365CrossRefPubMedGoogle Scholar
  14. Grandi, G 2003Rational antibacterial vaccine design through genomic technologiesInt J Parasitol33615620CrossRefPubMedGoogle Scholar
  15. Jiggins, FM, Hurst, GD 2002Host-symbiont conflicts: Positive selection on an outer membrane protein of parasitic but not mutualistic RickettsiaceaeMol Biol Evol1913411349PubMedGoogle Scholar
  16. Kinsella, RJ, Fitzpatrick, DA, Creevey, CJ, McInerney, JO 2003Fatty acid biosynthesis in Mycobacterium tuberculosis: lateral gene transfer, adaptive evolution, and gene duplicationProc Natl Acad Sci USA1001032010325CrossRefPubMedGoogle Scholar
  17. Li, WH 1993Unbiased estimation of the rates of synonymous and nonsynonymous substitutionJ Mol Evol369699PubMedGoogle Scholar
  18. Martin, D, Cadieux, N, Hamel, J, Brodeur, BR 1997Highly conserved Neisseria meningitidis surface protein confers protection against experimental infectionJ Exp Med18511731183CrossRefPubMedGoogle Scholar
  19. Maynard-Smith, J, Smith, NH 1998Detecting recombination from gene treesMol Biol Evol15590599PubMedGoogle Scholar
  20. Naess, A, Halstensen, A, Nyland, H, Pedersen, SH, Moller, P, Borgmann, R, Larsen, JL, Haga, E 1994Sequelae one year after meningococcal diseaseActa Neurol Scand89139142PubMedGoogle Scholar
  21. Nassif X (2002) Genomics of Neisseria meningitidis. 91:419–423Google Scholar
  22. Nassif, X, Pujol, C, Morand, P, Eugene, E 1999Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzleMol Microbiol3211241132CrossRefPubMedGoogle Scholar
  23. Nielsen, R, Yang, Z 1998Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope geneGenetics148929936PubMedGoogle Scholar
  24. Nowak, MA, Anderson, RM, McLean, AR, Wolfs, TF, Goudsmit, J, May, RM 1991Antigenic diversity thresholds and the development of AIDSScience254963969PubMedGoogle Scholar
  25. Pizza, M, Scarlato, V, Masignani, V, Giuliani, MM, Arico, B, Comanducci, M, Jennings, GT, Baldi, L, Bartolini, E, Capecchi, B, Galeotti, CL, Luzzi, E, Manetti, R, Marchetti, E, Mora, M, Nuti, S, Ratti, G, Santini, L, Savino, S, Scarselli, M, Storni, E, Zuo, P, Broeker, M, Hundt, E, Knapp, B, Blair, E, Mason, T, Tettelin, H, Hood, DW, Jeffries, AC, Saunders, NJ, Granoff, DM, Venter, JC, Moxon, ER, Grandi, G, Rappuoli, R 2000Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencingScience28718161820CrossRefPubMedGoogle Scholar
  26. Posada, D, Crandall, KA 1998MODELTEST; testing the model of DNA substitutionBioinformatics (Oxford, England)14817818Google Scholar
  27. Sierra, GV, Campa, HC, Varcacel, NM, Garcia, IL, Izquierdo, PL, Sotolongo, PF, Casanueva, GV, Rico, CO, Rodriguez, CR, Terry, MH 1991Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in CubaNIPH Ann14195207, discussion 208–110PubMedGoogle Scholar
  28. Smith, NH, Maynard-Smith, J, Spratt, BG 1995Sequence evolution of the porB gene of Neisseria gonorrhoeae and Neisseria meningitidis: evidence of positive Darwinian selectionMol Biol Evol12363370PubMedGoogle Scholar
  29. Suzuki, Y 2004Negative selection on neutralization epitopes of poliovirus surface proteins: implications for prediction of candidate epitopes for immunizationGene328127133CrossRefPubMedGoogle Scholar
  30. Suzuki, Y, Nei, M 2001aReliabilities of parsimony-based and Likelihood-based methods for detecting positive selection at single amino acid sitesMol Biol Evol1821792185Google Scholar
  31. Suzuki, Y, Nei, M 2001bReliabilities of parsimony-based and likelihood-based methods for detecting positive selection at single amino acid sitesMol Biol Evol1821792185Google Scholar
  32. Suzuki Y, Nei M (2004) False positive selection identified by ML-based methods: Examples from the Sig1 gene of the diatom thalassiosira weissflogii and the tax gene of a human T-cell lymphotropic virus. Mol Biol Evol:msh098Google Scholar
  33. Swanson, WJ, Yang, Z, Wolfner, MF, Aquadro, CF 2001Positive Darwinian selection drives the evolution of several female reproductive proteins in mammalsProc Natl Acad Sci U S A9825092514CrossRefPubMedGoogle Scholar
  34. Swofford, D 1998)PAUP*: Phylogenetic analysis using parsimony (*and other methods)Sinauer AssociatesSunderland, MAGoogle Scholar
  35. Tettelin, H, Saunders, NJ, Heidelberg, J, Jeffries, AC, Nelson, KE, Eisen, JA, Ketchum, KA, Hood, DW, Peden, JF, Dodson, RJ, Nelson, WC, Gwinn, ML, DeBoy, R, Peterson, JD, Hickey, EK, Haft, DH, Salzberg, SL, White, O, Fleischmann, RD, Dougherty, BA, Mason, T, Ciecko, A, Parksey, DS, Blair, E, Cittone, H, Clark, EB, Cotton, MD, Utterback, TR, Khouri, H, Qin, H, Vamathevan, J, Gill, J, Scarlato, V, Masignani, V, Pizza, M, Grandi, G, Sun, L, Smith, HO, Fraser, CM, Moxon, ER, Rappuoli, R, Venter, JC 2000Complete genome sequence of Neisseria meningitidis serogroup B strain MC58Science28718091815CrossRefPubMedGoogle Scholar
  36. Thompson, JD, Higgins, DG, Gibson, TJ 1994CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res (online)2246734680Google Scholar
  37. Urwin, R, Holmes, EC, Fox, AJ, Derrick, JP, Maiden, MC 2002Phylogenetic evidence for frequent positive selection and recombination in the meningococcal surface antigen PorBMol Biol Evol1916861694PubMedGoogle Scholar
  38. Yang, Z 1997PAML: a program package for phylogenetic analysis by maximum likelihoodComput Appl Biosci13555556PubMedGoogle Scholar
  39. Yang, Z 1998Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolutionMol Biol Evol15568573PubMedGoogle Scholar
  40. Yang, Z 2000Maximum likelihood estimation on large phytogenies and analysis of adaptive evolution in human influenza virus AJ Mol Evol51423432PubMedGoogle Scholar
  41. Yang, Z 2001Maximum likelihood analysis of adaptive evolution in HIV-1 gp120 env genePac Symp Biocomput2001i226237Google Scholar
  42. Yang, Z, Nielsen, R, Goldman, N, Pedersen, AM 2000Codon-substitution models for heterogeneous selection pressure at amino acid sitesGenetics155431449PubMedGoogle Scholar
  43. Zanotto, PM, Kallas, EG, Souza, RF, Holmes, EC 1999Genealogical evidence for positive selection in the nef gene of HIV-1Genetics15310771089PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • David A. Fitzpatrick
    • 1
  • Christopher J. Creevey
    • 1
  • James O. McInerney
    • 1
  1. 1.Department of BiologyNational University of IrelandMaynoothIreland

Personalised recommendations