The Coevolution of Genes and Genetic Codes: Crick’s Frozen Accident Revisited

Abstract

The standard genetic code is the nearly universal system for the translation of genes into proteins. The code exhibits two salient structural characteristics: it possesses a distinct organization that makes it extremely robust to errors in replication and translation, and it is highly redundant. The origin of these properties has intrigued researchers since the code was first discovered. One suggestion, which is the subject of this review, is that the code’s organization is the outcome of the coevolution of genes and genetic codes. In 1968, Francis Crick explored the possible implications of coevolution at different stages of code evolution. Although he argues that coevolution was likely to influence the evolution of the code, he concludes that it falls short of explaining the organization of the code we see today. The recent application of mathematical modeling to study the effects of errors on the course of coevolution, suggests a different conclusion. It shows that coevolution readily generates genetic codes that are highly redundant and similar in their error-correcting organization to the standard code. We review this recent work and suggest that further affirmation of the role of coevolution can be attained by investigating the extent to which the outcome of coevolution is robust to other influences that were present during the evolution of the code.

This is a preview of subscription content, access via your institution.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8

References

  1. Alff-Steinberger C (1969) The genetic code and error transmission. Proc Natl Acad Sci USA 64:584–591

    PubMed  CAS  Article  Google Scholar 

  2. Ardell DH (1998) On error-minimization in a sequential origin of the standard genetic code. J Mol Evol 47:1–13

    PubMed  CAS  Article  Google Scholar 

  3. Ardell DH (1999) Statistical and dynamical studies in the evolution of the standard genetic code and a biochemical study of variation in resilin from Schistocerca gregaria. PhD thesis. Stanford University, Stanford, CA

  4. Ardell DH, Sella G (2001) On the evolution of redundancy in genetic codes. J Mol Evol 53:269–281

    PubMed  CAS  Article  Google Scholar 

  5. Ardell DH, Sella G (2002) No accident: genetic codes freeze in error-correcting patterns of the standard genetic code. Phil Trans R Soc Lond B 357:1625–1642

    CAS  Article  Google Scholar 

  6. Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    PubMed  CAS  Article  Google Scholar 

  7. Davies J, Gilbert W, Gorini L (1964) Streptomycin, suppression and the code. Proc Natl Acad Sci USA 51:883–890

    PubMed  CAS  Article  Google Scholar 

  8. Davies J, Jones DS, Khorana HG (1966) A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol 18:48–57

    PubMed  CAS  Google Scholar 

  9. de Duve CR (1995) Vital dust. Basic Books, New York

    Google Scholar 

  10. Di Giulio M (1994) The phylogeny of tRNAs seems to confirm the coevolution of the oringin of the genetic code. Orig Life Evol Biosph 25:549–564

    Article  Google Scholar 

  11. Di Giulio M (2004) The coevolution theory of the origin of the genetic code. Physics Life Rev 1:128–137

    Article  Google Scholar 

  12. Döring V, Marliére P (1998) Reassigning cysteine in the genetic code of Escherichia coli. Genetics 150:543–551

    PubMed  Google Scholar 

  13. Eigen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, Berlin

    Google Scholar 

  14. El‘skaya AV, Soldatkin AP (1985) The bases of translational fidelity. Molekulyarna Biol 18:1163–1180

    Google Scholar 

  15. Fitch WM (1966) Evidence suggesting a partial, internal duplication in the ancestral gene for heme-containing globins. J Mol Biol 16:9–16

    PubMed  CAS  Article  Google Scholar 

  16. Fitch WM, Upper K (1987) The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harbor Symp Quant Biol 52:759–767

    PubMed  CAS  Google Scholar 

  17. Francklyn C, Perona JJ, Puetz J, Hou YM (2002) Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA 8:1363–1372

    PubMed  CAS  Article  Google Scholar 

  18. Freeland SJ (2002) The Darwinian code: An adaptation for adapting. J Gen Progr Evolv Machines 3:113–127

    Article  Google Scholar 

  19. Freeland SJ, Hurst LD (1998) The genetic code is one in a million. J Mol Evol 47:238–248

    PubMed  CAS  Article  Google Scholar 

  20. Freeland SJ, Wu T, Keulmann N (2003) The case for an error minimizing standard genetic code. Orig Life Evol Biosph 4–5:457–477

    Article  Google Scholar 

  21. Freese E (1961) Transitions and transversions induced by depurinating agents. Proc Natl Acad Sci USA 47:540–545

    PubMed  CAS  Article  Google Scholar 

  22. Gojobori T, Li W-H, Graur D (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18:360–369

    PubMed  CAS  Article  Google Scholar 

  23. Goldberg AL, Wittes RE (1966) Genetic code: aspects of organization. Science 153:420–424

    PubMed  CAS  Google Scholar 

  24. Haig D, Hurst LD (1991) A Quantitative measure of error minimization in the genetic code. J Mol Evol 33:412–417

    PubMed  CAS  Article  Google Scholar 

  25. Hixon JE, Brown WM (1986) A comparison of small ribosomal RNA genes from the mitochondrial DNA of great apes and humans: sequence, structure, evolution and phylogenetic implications. Mol Biol Evol 3:1–18

    Google Scholar 

  26. Jukes TH (1973) Arginine as an evolutionary intruder into protein synthesis. Biochem Biophys Res Commun 53:709–714

    PubMed  CAS  Article  Google Scholar 

  27. Kamtekar S, et al. (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262:1680–1685

    PubMed  CAS  Google Scholar 

  28. Knight RD, Landweber LF (2000) Guilt by association: the arginine case revisited. RNA 6:499–510

    PubMed  CAS  Article  Google Scholar 

  29. Knight RD, Freeland SJ, Landweber LF (1999) Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci 24:241–249

    PubMed  CAS  Article  Google Scholar 

  30. Krishna RG, Wold F (1993) Posttranslational modification of proteins. Adv Enzymol Relat Areas Mol Biol 67:265–298

    PubMed  CAS  Google Scholar 

  31. Nirenberg MW, Jones OW, Leder P, Clark BFC, Sly WS, Pestka S (1963) On the coding of genetic information. Cold Spring Harbor Symp Quant Biol 28:549–558

    CAS  Google Scholar 

  32. Osawa S, Jukes TH, Watanabe K, Muto A (1992) Recent evidence for evolution of the genetic code. Microbiol Rev 56:229–264

    PubMed  CAS  Google Scholar 

  33. Parker J (1989) Errors and alternatives in reading the universal genetic code. Microbiol Rev 53:273–298

    PubMed  CAS  Google Scholar 

  34. Petrov DA, Hartl DL (1999) Patterns of substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci USA 96:1475–1479

    PubMed  CAS  Article  Google Scholar 

  35. Sankoff D, Morel C, Cedergren RJ (1973) Evolution of 5S RNA and the non-randomness of base replacement. Nature New Biol 245:232–234

    PubMed  CAS  Article  Google Scholar 

  36. Sella G, Ardell DH (2002) The impact of message mutation on the fitness of a genetic code. J Mol Evol 54:638–651

    PubMed  CAS  Article  Google Scholar 

  37. Sonneborn TM (1965) Degeneracy of the genetic code: extent, nature, and genetic implications. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 377–397

    Google Scholar 

  38. Swanson R (1984) A unifying concept for the amino acid code. Bull Math Biol 46:187–203

    PubMed  CAS  Google Scholar 

  39. Taylor FJR, Coates D (1989) The code within the codons. BioSystems 22:177–187

    PubMed  CAS  Article  Google Scholar 

  40. Tlusty T (2006) Emergence of a genetic code as a phase transition induced by error-load topology (Submitted)

  41. Topal MD, Fresco JR (1976) Complementary base pairing and the origin of substitution matrices. Nature 263:285–293

    PubMed  CAS  Article  Google Scholar 

  42. Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC (1991) African populations and the evolution of human mitochondrial DNA. Science 253:1503–1507

    PubMed  CAS  Google Scholar 

  43. Wakeley J (1996) The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends Ecol. Evol 4:158–163

    Article  Google Scholar 

  44. West WW, Hecht H (1995) Binary patterning of polar and nonpolar amino acids in the sequence and structure of native proteins. Protein Sci 4:2032–2039

    PubMed  CAS  Article  Google Scholar 

  45. Woese CR (1965) On the evolution of the genetic code. Proc Natl Acad Sci USA 54:1546–1552

    PubMed  CAS  Article  Google Scholar 

  46. Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper & Row, New York

    Google Scholar 

  47. Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    PubMed  CAS  Article  Google Scholar 

  48. Woese CR, Dugre DH, Dugre SA, Kondo M, Saxinger WC (1966) On the fundamental nature and evolution of the genetic code. Cold Spring Harbor Symp Quant Biol 31:723–736

    PubMed  CAS  Google Scholar 

  49. Wong J (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 77:1083–1086

    Article  Google Scholar 

  50. Wong JT (2005) Coevolution theory of the genetic code at age thirty. Bioessays 4:416–425

    Article  CAS  Google Scholar 

  51. Xue H, Tong KL, Marck C, Grosjean H, Wong JT (2003) Transfer RNA paralogs: evidence for genetic code-amino acid biosynthesis coevolution and an archaeal root of life. Gene 310:59–66

    PubMed  CAS  Article  Google Scholar 

  52. Yarus M (2000) RNA-ligand chemistry: a testable source for the genetic code. RNA 6:475–484

    PubMed  CAS  Article  Google Scholar 

  53. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Acknowledgments

We thanks Marcus W. Feldman, Ilan Eshel, Aaron Hirsh, Dmitri Petrov, Michael Lachmann, Tuvik Becker, Ben Kerr, Jennifer Hughes, Steve Freeland, Rob Knight, Erel Levine, Emile Zuckerkandl, and three anonymous reviewers for valuable comments at various stages of this work. We also thank Tsvi Tlusty for his comments and for sharing his exciting results with us. The research of D.A. and G.S. was partly supported by NIH Grants GM28016 and GM28428 to Marcus W. Feldman. G.S. was also supported by a Koshland Scholarship and by the Center for Complexity Science of the Yashaya Horowitz Association.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guy Sella.

Additional information

[Reviewing Editor: Dr. Martin Kreitman]

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sella, G., Ardell, D.H. The Coevolution of Genes and Genetic Codes: Crick’s Frozen Accident Revisited. J Mol Evol 63, 297–313 (2006). https://doi.org/10.1007/s00239-004-0176-7

Download citation

Keywords

  • Genetic code
  • Coevolution